Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from image_to_video import model_i2v_fun, get_input, auto_inpainting, setup_seed | |
| from omegaconf import OmegaConf | |
| import torch | |
| from diffusers.utils.import_utils import is_xformers_available | |
| import torchvision | |
| from utils import mask_generation_before | |
| import os | |
| import cv2 | |
| config_path = "./configs/sample_i2v.yaml" | |
| args = OmegaConf.load(config_path) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| css = """ | |
| h1 { | |
| text-align: center; | |
| } | |
| #component-0 { | |
| max-width: 730px; | |
| margin: auto; | |
| } | |
| """ | |
| def infer(prompt, image_inp, seed_inp, ddim_steps,width,height): | |
| setup_seed(seed_inp) | |
| args.num_sampling_steps = ddim_steps | |
| img = cv2.imread(image_inp) | |
| new_size = [height,width] | |
| args.image_size = new_size | |
| vae, model, text_encoder, diffusion = model_i2v_fun(args) | |
| vae.to(device) | |
| model.to(device) | |
| text_encoder.to(device) | |
| if args.use_fp16: | |
| vae.to(dtype=torch.float16) | |
| model.to(dtype=torch.float16) | |
| text_encoder.to(dtype=torch.float16) | |
| if args.enable_xformers_memory_efficient_attention and device=="cuda": | |
| if is_xformers_available(): | |
| model.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| video_input, reserve_frames = get_input(image_inp, args) | |
| video_input = video_input.to(device).unsqueeze(0) | |
| mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) | |
| masked_video = video_input * (mask == 0) | |
| prompt = prompt + args.additional_prompt | |
| video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,) | |
| video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1) | |
| torchvision.io.write_video(os.path.join(args.save_img_path, prompt+ '.mp4'), video_, fps=8) | |
| return os.path.join(args.save_img_path, prompt+ '.mp4') | |
| # def clean(): | |
| # return gr.Image.update(value=None, visible=False), gr.Video.update(value=None) | |
| # return gr.Video.update(value=None) | |
| title = """ | |
| <div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
| <div | |
| style=" | |
| display: inline-flex; | |
| align-items: center; | |
| gap: 0.8rem; | |
| font-size: 1.75rem; | |
| " | |
| > | |
| <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> | |
| SEINE: Image-to-Video generation | |
| </h1> | |
| </div> | |
| <p style="margin-bottom: 10px; font-size: 94%"> | |
| Apply SEINE to generate a video | |
| </p> | |
| </div> | |
| """ | |
| with gr.Blocks(css='style.css') as demo: | |
| gr.Markdown("<font color=red size=10><center>SEINE: Image-to-Video generation</center></font>") | |
| with gr.Column(elem_id="col-container"): | |
| # gr.HTML(title) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_inp = gr.Image(type='filepath') | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in") | |
| with gr.Row(): | |
| # control_task = gr.Dropdown(label="Task", choices=["Text-2-video", "Image-2-video"], value="Text-2-video", multiselect=False, elem_id="controltask-in") | |
| ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1) | |
| seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=250, elem_id="seed-in") | |
| with gr.Row(): | |
| width = gr.Slider(label='width',minimum=1,maximum=2000,value=512,step=1) | |
| height = gr.Slider(label='height',minimum=1,maximum=2000,value=320,step=1) | |
| # ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1) | |
| submit_btn = gr.Button("Generate video") | |
| # clean_btn = gr.Button("Clean video") | |
| video_out = gr.Video(label="Video result", elem_id="video-output", width = 800) | |
| inputs = [prompt,image_inp, seed_inp, ddim_steps,width,height] | |
| outputs = [video_out] | |
| ex = gr.Examples( | |
| examples = [["./The_picture_shows_the_beauty_of_the_sea_.jpg","A video of the beauty of the sea",123,250,560,240], | |
| ["./The_picture_shows_the_beauty_of_the_sea.png","A video of the beauty of the sea",123,250,560,240], | |
| ["./Close-up_essence_is_poured_from_bottleKodak_Vision.png","A video of close-up essence is poured from bottleKodak Vision",123,250,560,240]], | |
| fn = infer, | |
| inputs = [image_inp, prompt, seed_inp, ddim_steps,width,height], | |
| outputs=[video_out], | |
| cache_examples=False | |
| ) | |
| ex.dataset.headers = [""] | |
| # control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False) | |
| # clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False) | |
| submit_btn.click(infer, inputs, outputs) | |
| # share_button.click(None, [], [], _js=share_js) | |
| demo.queue(max_size=12).launch() | |