Spaces:
Running
on
Zero
Running
on
Zero
VamooseBambel
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import yaml
|
3 |
+
import subprocess
|
4 |
+
import sys
|
5 |
+
import spaces
|
6 |
+
import numpy as np
|
7 |
+
from nsfw_detector import NSFWDetector, create_error_image
|
8 |
+
from PIL import Image
|
9 |
+
import time
|
10 |
+
import logging
|
11 |
+
from threading import Timer
|
12 |
+
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Global variables
|
17 |
+
global_model = None
|
18 |
+
last_use_time = None
|
19 |
+
unload_timer = None
|
20 |
+
TIMEOUT_SECONDS = 120 # 2 minutes
|
21 |
+
|
22 |
+
# Clone the repository
|
23 |
+
if not os.path.exists('Sana'):
|
24 |
+
subprocess.run(['git', 'clone', 'https://github.com/NVlabs/Sana.git'])
|
25 |
+
|
26 |
+
# Change to Sana directory
|
27 |
+
os.chdir('Sana')
|
28 |
+
|
29 |
+
# Workarounds
|
30 |
+
def modify_builder():
|
31 |
+
builder_path = 'diffusion/model/builder.py'
|
32 |
+
with open(builder_path, 'r') as f:
|
33 |
+
content = f.readlines()
|
34 |
+
|
35 |
+
# Find the text_encoder_dict definition
|
36 |
+
for i, line in enumerate(content):
|
37 |
+
if 'text_encoder_dict = {' in line:
|
38 |
+
content.insert(i + 11, ' "unsloth-gemma-2-2b-it": "unsloth/gemma-2-2b-it",\n')
|
39 |
+
break
|
40 |
+
|
41 |
+
with open(builder_path, 'w') as f:
|
42 |
+
f.writelines(content)
|
43 |
+
|
44 |
+
def modify_config():
|
45 |
+
config_path = 'configs/sana_config/1024ms/Sana_1600M_img1024.yaml'
|
46 |
+
|
47 |
+
with open(config_path, 'r') as f:
|
48 |
+
config = yaml.safe_load(f)
|
49 |
+
|
50 |
+
# Update text encoder
|
51 |
+
config['text_encoder']['text_encoder_name'] = 'unsloth-gemma-2-2b-it'
|
52 |
+
|
53 |
+
config['model']['mixed_precision'] = 'bf16'
|
54 |
+
|
55 |
+
with open(config_path, 'w') as f:
|
56 |
+
yaml.dump(config, f, default_flow_style=False)
|
57 |
+
|
58 |
+
# Run environment setup commands
|
59 |
+
setup_commands = [
|
60 |
+
"pip install torch", # init raw torch
|
61 |
+
"pip install -U pip", # update pip
|
62 |
+
"pip install -U xformers==0.0.27.post2 --index-url https://download.pytorch.org/whl/cu121", # fast attn
|
63 |
+
"pip install pyyaml",
|
64 |
+
"pip install -e ." # install sana
|
65 |
+
]
|
66 |
+
|
67 |
+
for cmd in setup_commands:
|
68 |
+
print(f"Running: {cmd}")
|
69 |
+
subprocess.run(cmd.split())
|
70 |
+
|
71 |
+
import torch
|
72 |
+
import gradio as gr
|
73 |
+
sys.path.append('.')
|
74 |
+
|
75 |
+
# Modify config and builder before importing SanaPipeline
|
76 |
+
modify_config()
|
77 |
+
modify_builder()
|
78 |
+
from Sana.app.sana_pipeline import SanaPipeline
|
79 |
+
|
80 |
+
def unload_model():
|
81 |
+
global global_model, last_use_time
|
82 |
+
current_time = time.time()
|
83 |
+
if last_use_time and (current_time - last_use_time) >= TIMEOUT_SECONDS:
|
84 |
+
logger.info("Unloading model due to inactivity...")
|
85 |
+
global_model = None
|
86 |
+
torch.cuda.empty_cache()
|
87 |
+
return "Model unloaded due to inactivity"
|
88 |
+
|
89 |
+
def reset_timer():
|
90 |
+
global unload_timer, last_use_time
|
91 |
+
if unload_timer:
|
92 |
+
unload_timer.cancel()
|
93 |
+
last_use_time = time.time()
|
94 |
+
unload_timer = Timer(TIMEOUT_SECONDS, unload_model)
|
95 |
+
unload_timer.start()
|
96 |
+
|
97 |
+
@spaces.GPU(duration=110)
|
98 |
+
def generate_image(prompt, height, width, guidance_scale, pag_guidance_scale, num_inference_steps):
|
99 |
+
global global_model
|
100 |
+
try:
|
101 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
102 |
+
if torch.cuda.is_available():
|
103 |
+
torch.cuda.empty_cache()
|
104 |
+
|
105 |
+
# Load model if needed
|
106 |
+
if global_model is None:
|
107 |
+
logger.info("Loading model...")
|
108 |
+
global_model = SanaPipeline("configs/sana_config/1024ms/Sana_1600M_img1024.yaml")
|
109 |
+
global_model.from_pretrained("hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth")
|
110 |
+
|
111 |
+
reset_timer()
|
112 |
+
# Random seed
|
113 |
+
generator = torch.Generator(device=device).manual_seed(int(time.time()))
|
114 |
+
|
115 |
+
image = global_model(
|
116 |
+
prompt=prompt,
|
117 |
+
height=height,
|
118 |
+
width=width,
|
119 |
+
guidance_scale=guidance_scale,
|
120 |
+
pag_guidance_scale=pag_guidance_scale,
|
121 |
+
num_inference_steps=num_inference_steps,
|
122 |
+
generator=generator,
|
123 |
+
)
|
124 |
+
|
125 |
+
# Convert tensor to PIL Image
|
126 |
+
image = ((image[0] + 1) / 2).float().cpu()
|
127 |
+
image = (image * 255).clamp(0, 255).numpy().astype(np.uint8)
|
128 |
+
image = Image.fromarray(image.transpose(1, 2, 0))
|
129 |
+
|
130 |
+
# Check for NSFW content
|
131 |
+
detector = NSFWDetector()
|
132 |
+
is_nsfw, category, confidence = detector.check_image(image)
|
133 |
+
|
134 |
+
if category == "SAFE":
|
135 |
+
return image
|
136 |
+
else:
|
137 |
+
logger.warning(f"NSFW content detected ({category} with {confidence:.2f}% confidence)")
|
138 |
+
return create_error_image()
|
139 |
+
|
140 |
+
except Exception as e:
|
141 |
+
logger.error(f"Error in generate_image: {str(e)}")
|
142 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
143 |
+
|
144 |
+
# Gradio Interface
|
145 |
+
with gr.Blocks(theme=gr.themes.Default(), css=""".center-text {text-align: center;}
|
146 |
+
.footer-link {text-align: center; margin: 20px 0;}
|
147 |
+
.slider-pad {margin-bottom: 24px;}""") as interface:
|
148 |
+
with gr.Row(elem_id="banner"):
|
149 |
+
with gr.Column():
|
150 |
+
gr.Markdown("# Sana 1.6B", elem_classes="center-text")
|
151 |
+
gr.Markdown("Generate high-resolution images up to 4096x4096 using the Sana 1.6B model, fast.", elem_classes="center-text")
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
with gr.Column(scale=2):
|
155 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=3)
|
156 |
+
with gr.Row():
|
157 |
+
with gr.Column():
|
158 |
+
height = gr.Slider(minimum=512, maximum=4096, step=64, value=1024, label="Height")
|
159 |
+
width = gr.Slider(minimum=512, maximum=4096, step=64, value=1024, label="Width")
|
160 |
+
with gr.Column():
|
161 |
+
guidance_scale = gr.Slider(minimum=1.0, maximum=10.0, step=0.5, value=5.0, label="Guidance Scale")
|
162 |
+
pag_guidance_scale = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, value=2.0, label="PAG Guidance Scale")
|
163 |
+
num_inference_steps = gr.Slider(minimum=2, maximum=50, step=1, value=18, label="Number of Steps")
|
164 |
+
|
165 |
+
gr.Markdown("*Note: Higher guidance scales provide stronger adherence to the prompt. PAG guidance helps with image-text alignment.*")
|
166 |
+
gr.Markdown("⏱️ Be patient, the model loads into memory slow first time around.")
|
167 |
+
|
168 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
169 |
+
|
170 |
+
with gr.Column(scale=2):
|
171 |
+
output = gr.Image(label="Generated Image", height=512)
|
172 |
+
|
173 |
+
# Examples section
|
174 |
+
gr.Examples(
|
175 |
+
examples=[
|
176 |
+
["a cyberpunk cat with a neon sign that says 'Sana'", 1024, 1024, 5.0, 2.0, 18],
|
177 |
+
["a beautiful sunset over a mountain landscape", 1024, 1024, 5.0, 2.0, 18],
|
178 |
+
["a futuristic city with flying cars", 1024, 1024, 5.0, 2.0, 18]
|
179 |
+
],
|
180 |
+
inputs=[prompt, height, width, guidance_scale, pag_guidance_scale, num_inference_steps],
|
181 |
+
outputs=output,
|
182 |
+
fn=generate_image,
|
183 |
+
)
|
184 |
+
|
185 |
+
generate_btn.click(
|
186 |
+
fn=generate_image,
|
187 |
+
inputs=[prompt, height, width, guidance_scale, pag_guidance_scale, num_inference_steps],
|
188 |
+
outputs=output
|
189 |
+
)
|
190 |
+
|
191 |
+
gr.Markdown("[link to model](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px)", elem_classes="center-text footer-link")
|
192 |
+
|
193 |
+
# Launch the interface
|
194 |
+
interface.launch()
|