Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torchvision import transforms | |
from transformers import AutoProcessor, FocalNetForImageClassification | |
import numpy as np | |
class NSFWDetector: | |
def __init__(self): | |
self.model_path = "TostAI/nsfw-image-detection-large" | |
self.feature_extractor = AutoProcessor.from_pretrained(self.model_path) | |
self.model = FocalNetForImageClassification.from_pretrained(self.model_path) | |
self.model.eval() | |
self.transform = transforms.Compose([ | |
transforms.Resize((512, 512)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
self.label_to_category = { | |
"LABEL_0": "Safe", | |
"LABEL_1": "Questionable", | |
"LABEL_2": "Unsafe" | |
} | |
def check_image(self, image): | |
# Convert image to RGB if it isn't already | |
image = image.convert("RGB") | |
# Process image | |
inputs = self.feature_extractor(images=image, return_tensors="pt") | |
# Get prediction | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
confidence, predicted = torch.max(probabilities, 1) | |
# Get the label | |
label = self.model.config.id2label[predicted.item()] | |
category = self.label_to_category.get(label, label) | |
return category != "Safe", category, confidence.item() * 100 |