SDXL-Turbo / app.py
VamooseBambel's picture
Update app.py
1e26c4c verified
import gradio as gr
import spaces
from diffusers import AutoPipelineForText2Image
import torch
import time
# import logging
from threading import Timer
from nsfw_detector import NSFWDetector
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# Global variables
pipe = None
last_use_time = None
unload_timer = None
TIMEOUT_SECONDS = 120 # 2 minutes
BATCH_SIZE = 4
def chunk_generations(num_images):
"""Split number of images into batches of BATCH_SIZE"""
return [min(BATCH_SIZE, num_images - i) for i in range(0, num_images, BATCH_SIZE)]
@spaces.GPU(duration=25)
def generate_image(
prompt,
num_inference_steps=1,
num_images=1,
height=512,
width=512,
):
global pipe
start_time = time.time()
# Load model if needed
if pipe is None:
yield None, "Loading model..."
pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype=torch.float16,
variant="fp16"
).to("cuda")
yield None, "Model loaded, starting generation..."
reset_timer()
# Process in batches if more than BATCH_SIZE images
if num_images > BATCH_SIZE:
yield None, f"Generating {num_images} images in batches..."
all_images = []
batches = chunk_generations(num_images)
for i, batch_size in enumerate(batches):
yield None, f"Generating batch {i+1}/{len(batches)} ({batch_size} images)..."
batch_images = pipe(
prompt=prompt,
num_inference_steps=num_inference_steps,
height=height,
width=width,
guidance_scale=0.0,
num_images_per_prompt=batch_size
).images
all_images.extend(batch_images)
images = all_images
else:
yield None, f"Generating {num_images} image(s) with {num_inference_steps} steps..."
images = pipe(
prompt=prompt,
num_inference_steps=num_inference_steps,
height=height,
width=width,
guidance_scale=0.0,
num_images_per_prompt=num_images
).images
total_time = time.time() - start_time
avg_time = total_time / num_images
status_msg = f"Generated {num_images} image(s) in {total_time:.2f} seconds (avg {avg_time:.2f}s per image)"
# logger.info(status_msg)
# Check for NSFW content
detector = NSFWDetector()
is_nsfw, category, confidence = detector.check_image(images[0])
if category == "SAFE":
yield images, status_msg
else:
return
def unload_model():
global pipe, last_use_time
current_time = time.time()
if last_use_time and (current_time - last_use_time) >= TIMEOUT_SECONDS:
# logger.info("Unloading model due to inactivity...")
pipe = None
torch.cuda.empty_cache()
return "Model unloaded due to inactivity"
def reset_timer():
global unload_timer, last_use_time
if unload_timer:
unload_timer.cancel()
last_use_time = time.time()
unload_timer = Timer(TIMEOUT_SECONDS, unload_model)
unload_timer.start()
# Create the Gradio interface
with gr.Blocks() as demo:
with gr.Column():
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
with gr.Row():
steps = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Number of inference steps")
num_images = gr.Slider(minimum=1, maximum=64, value=1, step=1, label="Number of images to generate")
with gr.Row():
height = gr.Slider(minimum=512, maximum=1024, value=512, step=64, label="Height")
width = gr.Slider(minimum=512, maximum=1024, value=512, step=64, label="Width")
generate_btn = gr.Button("Generate")
gallery = gr.Gallery()
status = gr.Textbox(
label="Status",
value="Model not loaded - will load on first generation",
interactive=False
)
generate_btn.click(
fn=generate_image,
inputs=[prompt, steps, num_images, height, width],
outputs=[gallery, status]
)
gr.Markdown("""
This model works best with 512x512 resolution and 1-4 inference steps.
Values above 4 steps may not improve quality significantly.
The model will automatically unload after 2 minutes of inactivity.
""")
if __name__ == "__main__":
demo.launch()