Vaishu16 commited on
Commit
219de2c
·
verified ·
1 Parent(s): 2901f65

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -61
app.py CHANGED
@@ -1,61 +1,61 @@
1
- import streamlit as st
2
- from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
3
-
4
- # Load the fine-tuned model and tokenizer
5
- @st.cache_resource # Cache model to avoid reloading
6
- def load_model():
7
- model_directory = "C:/Users/DELL/Desktop/QC_streamlit/QC_fine_tuned_smollm2_360m_instruct_3_epoch"
8
- model = AutoModelForCausalLM.from_pretrained(model_directory)
9
- tokenizer = AutoTokenizer.from_pretrained(model_directory)
10
- return model, tokenizer
11
-
12
- # Load model and tokenizer
13
- model, tokenizer = load_model()
14
-
15
- # Create a pipeline
16
- question_completion_pipeline = pipeline(
17
- "text-generation",
18
- model=model,
19
- tokenizer=tokenizer,
20
- device=-1
21
- )
22
-
23
- # Streamlit UI
24
- st.title("Question Completion Model")
25
- st.write("Provide a partial question, and the model will complete it.")
26
-
27
- partial_question = st.text_input("Enter a partial question:", "")
28
-
29
- if st.button("Complete Question"):
30
- if partial_question.strip():
31
- output = question_completion_pipeline(
32
- partial_question,
33
- max_length=60,
34
- num_return_sequences=1,
35
- do_sample=True
36
- )
37
-
38
- completed_question = output[0]["generated_text"]
39
- st.success(f"Completed Question: {completed_question}")
40
-
41
- else:
42
- st.warning("Please enter a partial question.")
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
 
1
+ import streamlit as st
2
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # Load the fine-tuned model and tokenizer
5
+ @st.cache_resource # Cache model to avoid reloading
6
+ def load_model():
7
+ model_directory = "Vaishu16/QC_fine_tuned_model"
8
+ model = AutoModelForCausalLM.from_pretrained(model_directory)
9
+ tokenizer = AutoTokenizer.from_pretrained(model_directory)
10
+ return model, tokenizer
11
+
12
+ # Load model and tokenizer
13
+ model, tokenizer = load_model()
14
+
15
+ # Create a pipeline
16
+ question_completion_pipeline = pipeline(
17
+ "text-generation",
18
+ model=model,
19
+ tokenizer=tokenizer,
20
+ device=-1
21
+ )
22
+
23
+ # Streamlit UI
24
+ st.title("Question Completion Model")
25
+ st.write("Provide a partial question, and the model will complete it.")
26
+
27
+ partial_question = st.text_input("Enter a partial question:", "")
28
+
29
+ if st.button("Complete Question"):
30
+ if partial_question.strip():
31
+ output = question_completion_pipeline(
32
+ partial_question,
33
+ max_length=60,
34
+ num_return_sequences=1,
35
+ do_sample=True
36
+ )
37
+
38
+ completed_question = output[0]["generated_text"]
39
+ st.success(f"Completed Question: {completed_question}")
40
+
41
+ else:
42
+ st.warning("Please enter a partial question.")
43
+
44
+
45
+
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+