Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import List, Tuple | |
| import numpy as np | |
| import tensorflow as tf | |
| from ..tf_utils import stable_softmax | |
| from ..utils import add_start_docstrings | |
| from ..utils.logging import get_logger | |
| logger = get_logger(__name__) | |
| TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. | |
| Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| scores (`tf.Tensor` of shape `(batch_size, config.vocab_size)`): | |
| Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam | |
| search or log softmax for each vocabulary token when using beam search. | |
| cur_len (`int`): | |
| The current length of valid input sequence tokens. In the TF implementation, the input_ids' sequence length | |
| is the maximum length generate can produce, and we need to know which of its tokens are valid. | |
| kwargs (`Dict[str, Any]`, *optional*): | |
| Additional logits processor specific kwargs. | |
| Return: | |
| `tf.Tensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. | |
| """ | |
| class TFLogitsProcessor: | |
| """Abstract base class for all logit processors that can be applied during generation.""" | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| """TF method for processing logits.""" | |
| raise NotImplementedError( | |
| f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." | |
| ) | |
| class TFLogitsWarper: | |
| """Abstract base class for all logit warpers that can be applied during generation with multinomial sampling.""" | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| """TF method for warping logits.""" | |
| raise NotImplementedError( | |
| f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." | |
| ) | |
| class TFLogitsProcessorList(list): | |
| """ | |
| This class can be used to create a list of [`TFLogitsProcessor`] to subsequently process a `scores` input tensor. | |
| This class inherits from list and adds a specific *__call__* method to apply each [`TFLogitsProcessor`] to the | |
| inputs. | |
| """ | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int, **kwargs) -> tf.Tensor: | |
| for processor in self: | |
| function_args = inspect.signature(processor.__call__).parameters | |
| if len(function_args) > 3: | |
| if not all(arg in kwargs for arg in list(function_args.keys())[2:]): | |
| raise ValueError( | |
| f"Make sure that all the required parameters: {list(function_args.keys())} for " | |
| f"{processor.__class__} are passed to the logits processor." | |
| ) | |
| scores = processor(input_ids, scores, cur_len, **kwargs) | |
| else: | |
| scores = processor(input_ids, scores, cur_len) | |
| return scores | |
| class TFTemperatureLogitsWarper(TFLogitsWarper): | |
| r""" | |
| [`TFLogitsWarper`] for temperature (exponential scaling output probability distribution). | |
| Args: | |
| temperature (`float`): | |
| The value used to module the logits distribution. | |
| """ | |
| def __init__(self, temperature: float): | |
| if not isinstance(temperature, float) or not (temperature > 0): | |
| raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}") | |
| self.temperature = temperature | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| scores = scores / self.temperature | |
| return scores | |
| class TFTopKLogitsWarper(TFLogitsWarper): | |
| r""" | |
| [`TFLogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements. | |
| Args: | |
| top_k (`int`): | |
| The number of highest probability vocabulary tokens to keep for top-k-filtering. | |
| filter_value (`float`, *optional*, defaults to -inf): | |
| All filtered values will be set to this float value. | |
| min_tokens_to_keep (`int`, *optional*, defaults to 1): | |
| Minimum number of tokens that cannot be filtered. | |
| """ | |
| def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): | |
| if not isinstance(top_k, int) or top_k <= 0: | |
| raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}") | |
| self.top_k = max(top_k, min_tokens_to_keep) | |
| self.filter_value = filter_value | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| top_k = min(self.top_k, scores.shape[-1]) # Safety check | |
| # Boolean mask containing all tokens with a probability less than the last token of the top-k | |
| indices_to_remove = scores < tf.math.top_k(scores, k=top_k)[0][..., -1:] | |
| next_scores = tf.where(indices_to_remove, self.filter_value, scores) | |
| return next_scores | |
| class TFTopPLogitsWarper(TFLogitsWarper): | |
| """ | |
| [`TFLogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to <= prob_cut_off. | |
| Args: | |
| top_p (`float`): | |
| If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or | |
| higher are kept for generation. | |
| filter_value (`float`, *optional*, defaults to -inf): | |
| All filtered values will be set to this float value. | |
| min_tokens_to_keep (`int`, *optional*, defaults to 1): | |
| Minimum number of tokens that cannot be filtered. | |
| """ | |
| def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): | |
| if not isinstance(top_p, float) or (top_p < 0 or top_p > 1.0): | |
| raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}") | |
| if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1): | |
| raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}") | |
| self.top_p = top_p | |
| self.filter_value = filter_value | |
| self.min_tokens_to_keep = min_tokens_to_keep | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| topk_scores, topk_indices = tf.math.top_k(scores, scores.shape[-1]) | |
| mask_scores = tf.fill(scores.shape, self.filter_value) | |
| cumulative_probs = tf.math.cumsum(stable_softmax(topk_scores, axis=-1), axis=-1) | |
| score_mask = cumulative_probs < self.top_p | |
| # Also include the token that is higher than top_p (the first false = shift and insert a True on the left) | |
| score_mask = tf.concat((tf.ones([score_mask.shape[0], 1], dtype=tf.bool), score_mask[:, :-1]), axis=-1) | |
| # Ensure min tokens to keep | |
| score_mask = tf.concat( | |
| ( | |
| tf.ones([score_mask.shape[0], self.min_tokens_to_keep], dtype=tf.bool), | |
| score_mask[:, self.min_tokens_to_keep :], | |
| ), | |
| axis=-1, | |
| ) | |
| # Mask the values that do not fit the criteria | |
| topk_next_scores = tf.where(score_mask, topk_scores, mask_scores) | |
| # Undo the topk sorting: converts the 2D matrix of per-row original indices of shape (batch_size, vocab_size) | |
| # to a 3D tensor of shape (batch_size, vocab_size, 2) containing the original score coordinate, from which we | |
| # can scatter (i.e. `scatter_indices[row, col, :]` is a tensor containing `[row, topk_indices[row, col]]`) | |
| scatter_rows = tf.tile(tf.expand_dims(tf.range(topk_indices.shape[0]), axis=-1), [1, topk_indices.shape[-1]]) | |
| scatter_indices = tf.stack((scatter_rows, topk_indices), axis=-1) | |
| next_scores = tf.scatter_nd(scatter_indices, topk_next_scores, shape=topk_next_scores.shape) | |
| return next_scores | |
| class TFMinLengthLogitsProcessor(TFLogitsProcessor): | |
| r""" | |
| [`TFLogitsProcessor`] enforcing a min-length by setting EOS probability to 0. | |
| Args: | |
| min_length (`int`): | |
| The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`. | |
| eos_token_id (`int`): | |
| The id of the *end-of-sequence* token. | |
| """ | |
| def __init__(self, min_length: int, eos_token_id: int): | |
| if not isinstance(min_length, int) or min_length < 0: | |
| raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}") | |
| if not isinstance(eos_token_id, int) or eos_token_id < 0: | |
| raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}") | |
| self.min_length = min_length | |
| self.eos_token_id = eos_token_id | |
| def _apply_eos_token_mask(self, scores: tf.Tensor) -> tf.Tensor: | |
| eos_token_id_mask = tf.range(scores.shape[-1]) == self.eos_token_id | |
| scores = tf.where(eos_token_id_mask, float("-inf"), scores) | |
| return scores | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| # applies eos token masking if the first argument is true | |
| scores = tf.cond( | |
| tf.less(cur_len, self.min_length), | |
| lambda: self._apply_eos_token_mask(scores), | |
| lambda: tf.identity(scores), | |
| ) | |
| return scores | |
| class TFRepetitionPenaltyLogitsProcessor(TFLogitsProcessor): | |
| r""" | |
| [`TFLogitsProcessor`] enforcing an exponential penalty on repeated sequences. | |
| Args: | |
| repetition_penalty (`float`): | |
| The parameter for repetition penalty. 1.0 means no penalty. See [this | |
| paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. | |
| """ | |
| def __init__(self, penalty: float): | |
| if not isinstance(penalty, float) or not (penalty > 0): | |
| raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") | |
| self.penalty = penalty | |
| def _create_score_penalties(self, input_ids: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: | |
| # We want to populate the penalties in the positions of `input_ids`. Since XLA can't handle shapes unknown | |
| # before runtime, `tf.unique` can't be used. Therefore, we may have redundant updates, when a given row has | |
| # the same token multiple times. | |
| # Gathers the penalties to apply | |
| logit_penalties = tf.gather(logits, input_ids, axis=1, batch_dims=1) | |
| logit_penalties = tf.where(logit_penalties > 0, 1 / self.penalty, logit_penalties) | |
| logit_penalties = tf.where(logit_penalties < 0, self.penalty, logit_penalties) | |
| # Scatters the penalties | |
| token_penalties = tf.ones(logits.shape) | |
| batch_size = input_ids.shape[0] | |
| seq_len = tf.shape(input_ids)[1] # the sequence length has dynamic size, hence the dynamic shape | |
| indexable_prev_input_ids = tf.concat( | |
| ( | |
| tf.expand_dims(tf.repeat(tf.range(batch_size), seq_len), axis=-1), | |
| tf.expand_dims(tf.reshape(input_ids, [-1]), axis=-1), | |
| ), | |
| axis=1, | |
| ) | |
| token_penalties = tf.tensor_scatter_nd_update( | |
| token_penalties, indices=indexable_prev_input_ids, updates=tf.reshape(logit_penalties, [-1]) | |
| ) | |
| return token_penalties | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| score_penalties = self._create_score_penalties(input_ids[:, :cur_len], scores) | |
| scores = tf.math.multiply(scores, score_penalties) | |
| return scores | |
| class TFNoBadWordsLogitsProcessor(TFLogitsProcessor): | |
| """ | |
| [`TFLogitsProcessor`] that enforces that specified sequences will never be sampled. | |
| Args: | |
| bad_words_ids (`List[List[int]]`): | |
| List of list of token ids that are not allowed to be generated. In order to get the tokens of the words | |
| that should not appear in the generated text, make sure to set `add_prefix_space=True` when initializing | |
| the tokenizer, and use `tokenizer(bad_words, add_special_tokens=False).input_ids`. The `add_prefix_space` | |
| argument is only supported for some slow tokenizers, as fast tokenizers' prefixing behaviours come from | |
| `pre tokenizers`. Read more [here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers). | |
| eos_token_id (`int`): | |
| The id of the *end-of-sequence* token. | |
| """ | |
| def __init__(self, bad_words_ids: List[List[int]], eos_token_id: int): | |
| if not isinstance(bad_words_ids, List) or len(bad_words_ids) == 0: | |
| raise ValueError(f"`bad_words_ids` has to be a non-empty list, but is {bad_words_ids}.") | |
| if any(not isinstance(bad_word_ids, list) for bad_word_ids in bad_words_ids): | |
| raise ValueError(f"`bad_words_ids` has to be a list of lists, but is {bad_words_ids}.") | |
| if any( | |
| any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in bad_word_ids) | |
| for bad_word_ids in bad_words_ids | |
| ): | |
| raise ValueError( | |
| f"Each list in `bad_words_ids` has to be a list of positive integers, but is {bad_words_ids}." | |
| ) | |
| # stores the information about bad words in three tensors: | |
| # 1. a rectangular tensor with the forbidden sequences (padded with `-1`), for full data comparisons | |
| self.bad_word_seqs_ids = tf.ragged.constant(bad_words_ids).to_tensor(default_value=-1) | |
| # 2. a tensor with the unpadded length of each forbidden sequence, for quick length comparisons | |
| bad_word_seqs_len = [len(bad_words) for bad_words in bad_words_ids] | |
| if any(word_len == 0 for word_len in bad_word_seqs_len): | |
| raise ValueError(f"Banned words token sequences {bad_words_ids} cannot have an empty list") | |
| self.bad_word_seqs_len = tf.convert_to_tensor(bad_word_seqs_len, dtype=tf.int32) | |
| # 3. a tensor containing the last token for each sequence, for easy access to the tokens that may be banned | |
| self.seq_forbidden_tokens = tf.convert_to_tensor([bad_words[-1] for bad_words in bad_words_ids]) | |
| def _calc_row_banned_bad_tokens(self, row_input_ids: tf.Tensor) -> tf.Tensor: | |
| def _tokens_match(bad_word_seq_number): | |
| def _len_one(): | |
| # If the bad sequence only has one token, always mask it | |
| return tf.cond( | |
| tf.math.equal(self.bad_word_seqs_len[bad_word_seq_number], 1), | |
| lambda: tf.ones((), dtype=tf.bool), | |
| _len_greater_than_cur_len, | |
| ) | |
| def _len_greater_than_cur_len(): | |
| # Otherwise, if the bad sequence is longer than the current length they can't ever match | |
| return tf.cond( | |
| tf.math.greater(self.bad_word_seqs_len[bad_word_seq_number], tf.shape(row_input_ids)[0]), | |
| lambda: tf.zeros((), dtype=tf.bool), | |
| _match_found, | |
| ) | |
| def _match_found(): | |
| # Finaly, runs the actual comparison. Can only be called if the previous comparisons do not yield | |
| # an answer (otherwise we get indexing exceptions) | |
| compare_len = self.bad_word_seqs_len[bad_word_seq_number] - 1 | |
| return tf.cond( | |
| tf.math.reduce_all( | |
| tf.math.equal( | |
| row_input_ids[-compare_len:], self.bad_word_seqs_ids[bad_word_seq_number, :compare_len] | |
| ) | |
| ), | |
| lambda: tf.ones((), dtype=tf.bool), | |
| lambda: tf.zeros((), dtype=tf.bool), | |
| ) | |
| match = _len_one() | |
| return match | |
| # Compares the current row against all bad word sequences, obtaining a mask with the matches. | |
| match_mask = tf.map_fn(_tokens_match, tf.range(self.bad_word_seqs_ids.shape[0]), fn_output_signature=tf.bool) | |
| row_banned_tokens = self.seq_forbidden_tokens[match_mask] | |
| return row_banned_tokens | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| # We want to mask some banned tokens, at a score level. Since the banned tokens depend on the previous | |
| # `input_ids`, they may have a different length for each row, and they may even be empty for some rows. | |
| # To remain simple and XLA-compatible, we work on a per-row fashion. | |
| # TODO (Joao): this function might trigger XLA retracing as `cur_len` increases. Fix it if it becomes | |
| # a frequent choke point. (make `cur_len` a tensor?) | |
| def _get_row_updated_score(row_inputs: Tuple[tf.Tensor]) -> tf.Tensor: | |
| row_input_ids, row_score = row_inputs | |
| banned_tokens = self._calc_row_banned_bad_tokens(row_input_ids[:cur_len]) | |
| banned_tokens_mask = tf.scatter_nd( | |
| indices=tf.expand_dims(banned_tokens, axis=-1), | |
| updates=tf.ones_like(banned_tokens, dtype=tf.bool), | |
| shape=row_score.shape, | |
| ) | |
| row_score = tf.where(banned_tokens_mask, -float("inf"), row_score) | |
| return row_score | |
| scores = tf.map_fn(_get_row_updated_score, (input_ids, scores), fn_output_signature=tf.float32) | |
| return scores | |
| class TFNoRepeatNGramLogitsProcessor(TFLogitsProcessor): | |
| r""" | |
| [`TFLogitsProcessor`] that enforces no repetition of n-grams. See | |
| [Fairseq](https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345). | |
| Args: | |
| ngram_size (`int`): | |
| All ngrams of size `ngram_size` can only occur once. | |
| """ | |
| def __init__(self, ngram_size: int): | |
| if not isinstance(ngram_size, int) or ngram_size <= 0: | |
| raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}") | |
| self.ngram_size = ngram_size | |
| def calc_banned_ngram_tokens(self, input_ids, num_hypos, cur_len): | |
| # Copied from fairseq for no_repeat_ngram in beam_search | |
| if cur_len + 1 < self.ngram_size: | |
| # return no banned tokens if we haven't generated ngram_size tokens yet | |
| return [[] for _ in range(num_hypos)] | |
| generated_ngrams = [{} for _ in range(num_hypos)] | |
| prev_input_ids = input_ids[:, :cur_len] | |
| for idx in range(num_hypos): | |
| gen_tokens = prev_input_ids[idx].numpy().tolist() | |
| generated_ngram = generated_ngrams[idx] | |
| for ngram in zip(*[gen_tokens[i:] for i in range(self.ngram_size)]): | |
| prev_ngram_tuple = tuple(ngram[:-1]) | |
| generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]] | |
| def _get_generated_ngrams(hypo_idx): | |
| # Before decoding the next token, prevent decoding of ngrams that have already appeared | |
| start_idx = cur_len + 1 - self.ngram_size | |
| ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].numpy().tolist()) | |
| return generated_ngrams[hypo_idx].get(ngram_idx, []) | |
| banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)] | |
| return banned_tokens | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| # TODO (joao): enable XLA on this logits processor. See discussion and attempts in | |
| # https://github.com/huggingface/transformers/pull/16974 | |
| if not tf.executing_eagerly(): | |
| raise NotImplementedError("TFNoRepeatNGramLogitsProcessor is only implemented for eager execution.") | |
| batch_size, vocab_size = scores.shape | |
| banned_tokens = self.calc_banned_ngram_tokens(input_ids, batch_size, cur_len) | |
| # create banned_tokens boolean mask | |
| banned_tokens_indices_mask = [] | |
| for banned_tokens_slice in banned_tokens: | |
| banned_tokens_indices_mask.append( | |
| [True if token in banned_tokens_slice else False for token in range(vocab_size)] | |
| ) | |
| scores = tf.where(tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf"), scores) | |
| return scores | |
| class TFForcedBOSTokenLogitsProcessor(TFLogitsProcessor): | |
| r""" | |
| [`TFLogitsProcessor`] that enforces the specified token as the first generated token. | |
| Args: | |
| bos_token_id (`int`): | |
| The id of the token to force as the first generated token. | |
| """ | |
| def __init__(self, bos_token_id: int): | |
| if bos_token_id < 0: | |
| raise ValueError(f"The forced bos token id must be a non-negative integer, got {bos_token_id}") | |
| self.bos_token_id = bos_token_id | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| if cur_len == 1: | |
| batch_size, num_tokens = scores.shape | |
| # sets the score to 0 in the bos_token_id column | |
| scores = tf.zeros((batch_size, 1)) | |
| # sets the score to -inf everywhere else | |
| if self.bos_token_id > 0: | |
| scores = tf.concat((tf.broadcast_to(-float("inf"), (batch_size, self.bos_token_id)), scores), axis=-1) | |
| if self.bos_token_id < (num_tokens - 1): | |
| scores = tf.concat( | |
| (scores, tf.broadcast_to(-float("inf"), (batch_size, (num_tokens - 1) - self.bos_token_id))), | |
| axis=-1, | |
| ) | |
| return scores | |
| class TFForcedEOSTokenLogitsProcessor(TFLogitsProcessor): | |
| r""" | |
| [`TFLogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached. | |
| Args: | |
| max_length (`int`): | |
| The maximum length of the sequence to be generated. | |
| eos_token_id (`int`): | |
| The id of the token to force as the last generated token when `max_length` is reached. | |
| """ | |
| def __init__(self, max_length: int, eos_token_id: int): | |
| self.max_length = max_length | |
| if eos_token_id < 0: | |
| raise ValueError(f"The forced eos token id must be a non-negative integer, got {eos_token_id}") | |
| self.eos_token_id = eos_token_id | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| if cur_len == self.max_length - 1: | |
| batch_size, num_tokens = scores.shape | |
| # sets the score to 0 in the eos_token_id column | |
| scores = tf.zeros((batch_size, 1)) | |
| # sets the score to -inf everywhere else | |
| if self.eos_token_id > 0: | |
| scores = tf.concat((tf.broadcast_to(-float("inf"), (batch_size, self.eos_token_id)), scores), axis=-1) | |
| if self.eos_token_id < (num_tokens - 1): | |
| scores = tf.concat( | |
| (scores, tf.broadcast_to(-float("inf"), (batch_size, (num_tokens - 1) - self.eos_token_id))), | |
| axis=-1, | |
| ) | |
| return scores | |
| class TFSuppressTokensAtBeginLogitsProcessor(TFLogitsProcessor): | |
| r""" | |
| [`TFSuppressTokensAtBeginLogitsProcessor`] suppresses a list of tokens as soon as the `generate` function starts | |
| generating using `begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` at not | |
| sampled at the begining of the generation. | |
| """ | |
| def __init__(self, begin_suppress_tokens, begin_index): | |
| self.begin_suppress_tokens = list(begin_suppress_tokens) | |
| self.begin_index = begin_index | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| scores = tf.cond( | |
| tf.equal(cur_len, self.begin_index), | |
| lambda: tf.tensor_scatter_nd_update( | |
| scores, | |
| indices=[[i, token] for i in range(scores.shape[0]) for token in self.begin_suppress_tokens], | |
| updates=[-float("inf") for _ in range(scores.shape[0] * len(self.begin_suppress_tokens))], | |
| ), | |
| lambda: scores, | |
| ) | |
| return scores | |
| class TFSuppressTokensLogitsProcessor(TFLogitsProcessor): | |
| r"""This processor can be used to suppress a list of tokens. The processor will set their log probs to `-inf` so that they | |
| are not sampled.""" | |
| def __init__(self, suppress_tokens): | |
| self.suppress_tokens = list(suppress_tokens) | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| scores = tf.tensor_scatter_nd_update( | |
| scores, | |
| indices=[[i, token] for i in range(scores.shape[0]) for token in self.suppress_tokens], | |
| updates=[-float("inf") for _ in range(scores.shape[0] * len(self.suppress_tokens))], | |
| ) | |
| return scores | |
| class TFForceTokensLogitsProcessor(TFLogitsProcessor): | |
| r"""This processor takes a list of pairs of integers which indicates a mapping from generation indices to token | |
| indices that will be forced before sampling. The processor will set their log probs to `0` and all other tokens to | |
| `-inf` so that they are sampled at their corresponding index.""" | |
| def __init__(self, force_token_map: List[List[int]]): | |
| force_token_map = dict(force_token_map) | |
| # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the | |
| # index of the array corresponds to the index of the token to be forced, for XLA compatibility. | |
| # Indexes without forced tokens will have an negative value. | |
| force_token_array = np.ones((max(force_token_map.keys()) + 1), dtype=np.int32) * -1 | |
| for index, token in force_token_map.items(): | |
| if token is not None: | |
| force_token_array[index] = token | |
| self.force_token_array = tf.convert_to_tensor(force_token_array, dtype=tf.int32) | |
| def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: | |
| def _force_token(generation_idx): | |
| batch_size = scores.shape[0] | |
| current_token = self.force_token_array[generation_idx] | |
| new_scores = tf.ones_like(scores, dtype=scores.dtype) * -float("inf") | |
| indices = tf.stack((tf.range(batch_size), tf.tile([current_token], [batch_size])), axis=1) | |
| updates = tf.zeros((batch_size,), dtype=scores.dtype) | |
| new_scores = tf.tensor_scatter_nd_update(new_scores, indices, updates) | |
| return new_scores | |
| scores = tf.cond( | |
| tf.greater_equal(cur_len, tf.shape(self.force_token_array)[0]), | |
| # If the current length is geq than the length of force_token_array, the processor does nothing. | |
| lambda: tf.identity(scores), | |
| # Otherwise, it may force a certain token. | |
| lambda: tf.cond( | |
| tf.greater_equal(self.force_token_array[cur_len], 0), | |
| # Only valid (positive) tokens are forced | |
| lambda: _force_token(cur_len), | |
| # Otherwise, the processor does nothing. | |
| lambda: scores, | |
| ), | |
| ) | |
| return scores | |