Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Generation configuration class and utilities.""" | |
| import copy | |
| import json | |
| import os | |
| import warnings | |
| from typing import Any, Dict, Optional, Union | |
| from .. import __version__ | |
| from ..configuration_utils import PretrainedConfig | |
| from ..utils import ( | |
| GENERATION_CONFIG_NAME, | |
| PushToHubMixin, | |
| cached_file, | |
| download_url, | |
| extract_commit_hash, | |
| is_remote_url, | |
| logging, | |
| ) | |
| logger = logging.get_logger(__name__) | |
| METADATA_FIELDS = ("_from_model_config", "_commit_hash", "_original_object_hash", "transformers_version") | |
| class GenerationConfig(PushToHubMixin): | |
| # no-format | |
| r""" | |
| Class that holds a configuration for a generation task. A `generate` call supports the following generation methods | |
| for text-decoder, text-to-text, speech-to-text, and vision-to-text models: | |
| - *greedy decoding* by calling [`~generation.GenerationMixin.greedy_search`] if `num_beams=1` and | |
| `do_sample=False` | |
| - *contrastive search* by calling [`~generation.GenerationMixin.contrastive_search`] if `penalty_alpha>0.` | |
| and `top_k>1` | |
| - *multinomial sampling* by calling [`~generation.GenerationMixin.sample`] if `num_beams=1` and | |
| `do_sample=True` | |
| - *beam-search decoding* by calling [`~generation.GenerationMixin.beam_search`] if `num_beams>1` and | |
| `do_sample=False` | |
| - *beam-search multinomial sampling* by calling [`~generation.GenerationMixin.beam_sample`] if | |
| `num_beams>1` and `do_sample=True` | |
| - *diverse beam-search decoding* by calling [`~generation.GenerationMixin.group_beam_search`], if | |
| `num_beams>1` and `num_beam_groups>1` | |
| - *constrained beam-search decoding* by calling [`~generation.GenerationMixin.constrained_beam_search`], if | |
| `constraints!=None` or `force_words_ids!=None` | |
| - *assisted decoding* by calling [`~generation.GenerationMixin.assisted_decoding`], if | |
| `assistant_model` is passed to `.generate()` | |
| You do not need to call any of the above methods directly. Pass custom parameter values to '.generate()'. To learn | |
| more about decoding strategies refer to the [text generation strategies guide](../generation_strategies). | |
| Arg: | |
| > Parameters that control the length of the output | |
| max_length (`int`, *optional*, defaults to 20): | |
| The maximum length the generated tokens can have. Corresponds to the length of the input prompt + | |
| `max_new_tokens`. Its effect is overridden by `max_new_tokens`, if also set. | |
| max_new_tokens (`int`, *optional*): | |
| The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt. | |
| min_length (`int`, *optional*, defaults to 0): | |
| The minimum length of the sequence to be generated. Corresponds to the length of the input prompt + | |
| `min_new_tokens`. Its effect is overridden by `min_new_tokens`, if also set. | |
| min_new_tokens (`int`, *optional*): | |
| The minimum numbers of tokens to generate, ignoring the number of tokens in the prompt. | |
| early_stopping (`bool` or `str`, *optional*, defaults to `False`): | |
| Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values: | |
| `True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an | |
| heuristic is applied and the generation stops when is it very unlikely to find better candidates; | |
| `"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical | |
| beam search algorithm). | |
| max_time(`float`, *optional*): | |
| The maximum amount of time you allow the computation to run for in seconds. generation will still finish | |
| the current pass after allocated time has been passed. | |
| > Parameters that control the generation strategy used | |
| do_sample (`bool`, *optional*, defaults to `False`): | |
| Whether or not to use sampling ; use greedy decoding otherwise. | |
| num_beams (`int`, *optional*, defaults to 1): | |
| Number of beams for beam search. 1 means no beam search. | |
| num_beam_groups (`int`, *optional*, defaults to 1): | |
| Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams. | |
| [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details. | |
| penalty_alpha (`float`, *optional*): | |
| The values balance the model confidence and the degeneration penalty in contrastive search decoding. | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should use the past last key/values attentions (if applicable to the model) to | |
| speed up decoding. | |
| > Parameters for manipulation of the model output logits | |
| temperature (`float`, *optional*, defaults to 1.0): | |
| The value used to modulate the next token probabilities. | |
| top_k (`int`, *optional*, defaults to 50): | |
| The number of highest probability vocabulary tokens to keep for top-k-filtering. | |
| top_p (`float`, *optional*, defaults to 1.0): | |
| If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to | |
| `top_p` or higher are kept for generation. | |
| typical_p (`float`, *optional*, defaults to 1.0): | |
| Local typicality measures how similar the conditional probability of predicting a target token next is to | |
| the expected conditional probability of predicting a random token next, given the partial text already | |
| generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that | |
| add up to `typical_p` or higher are kept for generation. See [this | |
| paper](https://arxiv.org/pdf/2202.00666.pdf) for more details. | |
| epsilon_cutoff (`float`, *optional*, defaults to 0.0): | |
| If set to float strictly between 0 and 1, only tokens with a conditional probability greater than | |
| `epsilon_cutoff` will be sampled. In the paper, suggested values range from 3e-4 to 9e-4, depending on the | |
| size of the model. See [Truncation Sampling as Language Model | |
| Desmoothing](https://arxiv.org/abs/2210.15191) for more details. | |
| eta_cutoff (`float`, *optional*, defaults to 0.0): | |
| Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to float strictly between | |
| 0 and 1, a token is only considered if it is greater than either `eta_cutoff` or `sqrt(eta_cutoff) * | |
| exp(-entropy(softmax(next_token_logits)))`. The latter term is intuitively the expected next token | |
| probability, scaled by `sqrt(eta_cutoff)`. In the paper, suggested values range from 3e-4 to 2e-3, | |
| depending on the size of the model. See [Truncation Sampling as Language Model | |
| Desmoothing](https://arxiv.org/abs/2210.15191) for more details. | |
| diversity_penalty (`float`, *optional*, defaults to 0.0): | |
| This value is subtracted from a beam's score if it generates a token same as any beam from other group at a | |
| particular time. Note that `diversity_penalty` is only effective if `group beam search` is enabled. | |
| repetition_penalty (`float`, *optional*, defaults to 1.0): | |
| The parameter for repetition penalty. 1.0 means no penalty. See [this | |
| paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. | |
| encoder_repetition_penalty (`float`, *optional*, defaults to 1.0): | |
| The paramater for encoder_repetition_penalty. An exponential penalty on sequences that are not in the | |
| original input. 1.0 means no penalty. | |
| length_penalty (`float`, *optional*, defaults to 1.0): | |
| Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to | |
| the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log | |
| likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while | |
| `length_penalty` < 0.0 encourages shorter sequences. | |
| no_repeat_ngram_size (`int`, *optional*, defaults to 0): | |
| If set to int > 0, all ngrams of that size can only occur once. | |
| bad_words_ids(`List[List[int]]`, *optional*): | |
| List of list of token ids that are not allowed to be generated. Check | |
| [`~generation.NoBadWordsLogitsProcessor`] for further documentation and examples. | |
| force_words_ids(`List[List[int]]` or `List[List[List[int]]]`, *optional*): | |
| List of token ids that must be generated. If given a `List[List[int]]`, this is treated as a simple list of | |
| words that must be included, the opposite to `bad_words_ids`. If given `List[List[List[int]]]`, this | |
| triggers a [disjunctive constraint](https://github.com/huggingface/transformers/issues/14081), where one | |
| can allow different forms of each word. | |
| renormalize_logits (`bool`, *optional*, defaults to `False`): | |
| Whether to renormalize the logits after applying all the logits processors or warpers (including the custom | |
| ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the score logits | |
| are normalized but some logit processors or warpers break the normalization. | |
| constraints (`List[Constraint]`, *optional*): | |
| Custom constraints that can be added to the generation to ensure that the output will contain the use of | |
| certain tokens as defined by `Constraint` objects, in the most sensible way possible. | |
| forced_bos_token_id (`int`, *optional*, defaults to `model.config.forced_bos_token_id`): | |
| The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful for | |
| multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be the target | |
| language token. | |
| forced_eos_token_id (`Union[int, List[int]]`, *optional*, defaults to `model.config.forced_eos_token_id`): | |
| The id of the token to force as the last generated token when `max_length` is reached. Optionally, use a | |
| list to set multiple *end-of-sequence* tokens. | |
| remove_invalid_values (`bool`, *optional*, defaults to `model.config.remove_invalid_values`): | |
| Whether to remove possible *nan* and *inf* outputs of the model to prevent the generation method to crash. | |
| Note that using `remove_invalid_values` can slow down generation. | |
| exponential_decay_length_penalty (`tuple(int, float)`, *optional*): | |
| This Tuple adds an exponentially increasing length penalty, after a certain amount of tokens have been | |
| generated. The tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where | |
| penalty starts and `decay_factor` represents the factor of exponential decay | |
| suppress_tokens (`List[int]`, *optional*): | |
| A list of tokens that will be suppressed at generation. The `SupressTokens` logit processor will set their | |
| log probs to `-inf` so that they are not sampled. | |
| begin_suppress_tokens (`List[int]`, *optional*): | |
| A list of tokens that will be suppressed at the beginning of the generation. The `SupressBeginTokens` logit | |
| processor will set their log probs to `-inf` so that they are not sampled. | |
| forced_decoder_ids (`List[List[int]]`, *optional*): | |
| A list of pairs of integers which indicates a mapping from generation indices to token indices that will be | |
| forced before sampling. For example, `[[1, 123]]` means the second generated token will always be a token | |
| of index 123. | |
| sequence_bias (`Dict[Tuple[int], float]`, *optional*)): | |
| Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the | |
| sequence being selected, while negative biases do the opposite. Check | |
| [`~generation.SequenceBiasLogitsProcessor`] for further documentation and examples. | |
| guidance_scale (`float`, *optional*): | |
| The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale > 1`. | |
| Higher guidance scale encourages the model to generate samples that are more closely linked to the input | |
| prompt, usually at the expense of poorer quality. | |
| low_memory (`bool`, *optional*): | |
| Switch to sequential topk for contrastive search to reduce peak memory. Used with contrastive search. | |
| > Parameters that define the output variables of `generate` | |
| num_return_sequences(`int`, *optional*, defaults to 1): | |
| The number of independently computed returned sequences for each element in the batch. | |
| output_attentions (`bool`, *optional*, defaults to `False`): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more details. | |
| output_hidden_states (`bool`, *optional*, defaults to `False`): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more details. | |
| output_scores (`bool`, *optional*, defaults to `False`): | |
| Whether or not to return the prediction scores. See `scores` under returned tensors for more details. | |
| return_dict_in_generate (`bool`, *optional*, defaults to `False`): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| > Special tokens that can be used at generation time | |
| pad_token_id (`int`, *optional*): | |
| The id of the *padding* token. | |
| bos_token_id (`int`, *optional*): | |
| The id of the *beginning-of-sequence* token. | |
| eos_token_id (`Union[int, List[int]]`, *optional*): | |
| The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. | |
| > Generation parameters exclusive to encoder-decoder models | |
| encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0): | |
| If set to int > 0, all ngrams of that size that occur in the `encoder_input_ids` cannot occur in the | |
| `decoder_input_ids`. | |
| decoder_start_token_id (`int`, *optional*): | |
| If an encoder-decoder model starts decoding with a different token than *bos*, the id of that token. | |
| > Wild card | |
| generation_kwargs: | |
| Additional generation kwargs will be forwarded to the `generate` function of the model. Kwargs that are not | |
| present in `generate`'s signature will be used in the model forward pass. | |
| """ | |
| def __init__(self, **kwargs): | |
| # Parameters that control the length of the output | |
| # if the default `max_length` is updated here, make sure to update the `generate` tests following https://github.com/huggingface/transformers/pull/25030 | |
| self.max_length = kwargs.pop("max_length", 20) | |
| self.max_new_tokens = kwargs.pop("max_new_tokens", None) | |
| self.min_length = kwargs.pop("min_length", 0) | |
| self.min_new_tokens = kwargs.pop("min_new_tokens", None) | |
| self.early_stopping = kwargs.pop("early_stopping", False) | |
| self.max_time = kwargs.pop("max_time", None) | |
| # Parameters that control the generation strategy used | |
| self.do_sample = kwargs.pop("do_sample", False) | |
| self.num_beams = kwargs.pop("num_beams", 1) | |
| self.num_beam_groups = kwargs.pop("num_beam_groups", 1) | |
| self.penalty_alpha = kwargs.pop("penalty_alpha", None) | |
| self.use_cache = kwargs.pop("use_cache", True) | |
| # Parameters for manipulation of the model output logits | |
| self.temperature = kwargs.pop("temperature", 1.0) | |
| self.top_k = kwargs.pop("top_k", 50) | |
| self.top_p = kwargs.pop("top_p", 1.0) | |
| self.typical_p = kwargs.pop("typical_p", 1.0) | |
| self.epsilon_cutoff = kwargs.pop("epsilon_cutoff", 0.0) | |
| self.eta_cutoff = kwargs.pop("eta_cutoff", 0.0) | |
| self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0) | |
| self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0) | |
| self.encoder_repetition_penalty = kwargs.pop("encoder_repetition_penalty", 1.0) | |
| self.length_penalty = kwargs.pop("length_penalty", 1.0) | |
| self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0) | |
| self.bad_words_ids = kwargs.pop("bad_words_ids", None) | |
| self.force_words_ids = kwargs.pop("force_words_ids", None) | |
| self.renormalize_logits = kwargs.pop("renormalize_logits", False) | |
| self.constraints = kwargs.pop("constraints", None) | |
| self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None) | |
| self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None) | |
| self.remove_invalid_values = kwargs.pop("remove_invalid_values", False) | |
| self.exponential_decay_length_penalty = kwargs.pop("exponential_decay_length_penalty", None) | |
| self.suppress_tokens = kwargs.pop("suppress_tokens", None) | |
| self.begin_suppress_tokens = kwargs.pop("begin_suppress_tokens", None) | |
| self.forced_decoder_ids = kwargs.pop("forced_decoder_ids", None) | |
| self.sequence_bias = kwargs.pop("sequence_bias", None) | |
| self.guidance_scale = kwargs.pop("guidance_scale", None) | |
| self.low_memory = kwargs.pop("low_memory", None) | |
| # Parameters that define the output variables of `generate` | |
| self.num_return_sequences = kwargs.pop("num_return_sequences", 1) | |
| self.output_attentions = kwargs.pop("output_attentions", False) | |
| self.output_hidden_states = kwargs.pop("output_hidden_states", False) | |
| self.output_scores = kwargs.pop("output_scores", False) | |
| self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False) | |
| # Special tokens that can be used at generation time | |
| self.pad_token_id = kwargs.pop("pad_token_id", None) | |
| self.bos_token_id = kwargs.pop("bos_token_id", None) | |
| self.eos_token_id = kwargs.pop("eos_token_id", None) | |
| # Generation parameters exclusive to encoder-decoder models | |
| self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0) | |
| self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None) | |
| # Wild card | |
| self.generation_kwargs = kwargs.pop("generation_kwargs", {}) | |
| # The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the the hub | |
| # interface. | |
| self._from_model_config = kwargs.pop("_from_model_config", False) | |
| self._commit_hash = kwargs.pop("_commit_hash", None) | |
| self.transformers_version = kwargs.pop("transformers_version", __version__) | |
| # Additional attributes without default values | |
| if not self._from_model_config: | |
| # we don't want to copy values from the model config if we're initializing a `GenerationConfig` from a | |
| # model's default configuration file | |
| for key, value in kwargs.items(): | |
| try: | |
| setattr(self, key, value) | |
| except AttributeError as err: | |
| logger.error(f"Can't set {key} with value {value} for {self}") | |
| raise err | |
| # Validate the values of the attributes | |
| self.validate(is_init=True) | |
| def __hash__(self): | |
| return hash(self.to_json_string(ignore_metadata=True)) | |
| def __eq__(self, other): | |
| if not isinstance(other, GenerationConfig): | |
| return False | |
| self_without_metadata = self.to_json_string(use_diff=False, ignore_metadata=True) | |
| other_without_metadata = other.to_json_string(use_diff=False, ignore_metadata=True) | |
| return self_without_metadata == other_without_metadata | |
| def __repr__(self): | |
| return f"{self.__class__.__name__} {self.to_json_string(ignore_metadata=True)}" | |
| def validate(self, is_init=False): | |
| """ | |
| Validates the values of the attributes of the [`GenerationConfig`] instance. Raises exceptions in the presence | |
| of parameterization that can be detected as incorrect from the configuration instance alone. | |
| Note that some parameters are best validated at generate runtime, as they may depend on other inputs and/or the | |
| model, such as parameters related to the generation length. | |
| """ | |
| # Validation of individual attributes | |
| if self.early_stopping not in {True, False, "never"}: | |
| raise ValueError(f"`early_stopping` must be a boolean or 'never', but is {self.early_stopping}.") | |
| # Validation of attribute relations: | |
| fix_location = "" | |
| if is_init: | |
| fix_location = ( | |
| " This was detected when initializing the generation config instance, which means the corresponding " | |
| "file may hold incorrect parameterization and should be fixed." | |
| ) | |
| # 1. detect sampling-only parameterization when not in sampling mode | |
| if self.do_sample is False: | |
| greedy_wrong_parameter_msg = ( | |
| "`do_sample` is set to `False`. However, `{flag_name}` is set to `{flag_value}` -- this flag is only " | |
| "used in sample-based generation modes. You should set `do_sample=True` or unset `{flag_name}`." | |
| + fix_location | |
| ) | |
| if self.temperature != 1.0: | |
| warnings.warn( | |
| greedy_wrong_parameter_msg.format(flag_name="temperature", flag_value=self.temperature), | |
| UserWarning, | |
| ) | |
| if self.top_p != 1.0: | |
| warnings.warn( | |
| greedy_wrong_parameter_msg.format(flag_name="top_p", flag_value=self.top_p), | |
| UserWarning, | |
| ) | |
| if self.typical_p != 1.0: | |
| warnings.warn( | |
| greedy_wrong_parameter_msg.format(flag_name="typical_p", flag_value=self.typical_p), | |
| UserWarning, | |
| ) | |
| if self.top_k != 50 and self.penalty_alpha is None: # contrastive search uses top_k | |
| warnings.warn( | |
| greedy_wrong_parameter_msg.format(flag_name="top_k", flag_value=self.top_k), | |
| UserWarning, | |
| ) | |
| if self.epsilon_cutoff != 0.0: | |
| warnings.warn( | |
| greedy_wrong_parameter_msg.format(flag_name="epsilon_cutoff", flag_value=self.epsilon_cutoff), | |
| UserWarning, | |
| ) | |
| if self.eta_cutoff != 0.0: | |
| warnings.warn( | |
| greedy_wrong_parameter_msg.format(flag_name="eta_cutoff", flag_value=self.eta_cutoff), | |
| UserWarning, | |
| ) | |
| # 2. detect beam-only parameterization when not in beam mode | |
| if self.num_beams == 1: | |
| single_beam_wrong_parameter_msg = ( | |
| "`num_beams` is set to 1. However, `{flag_name}` is set to `{flag_value}` -- this flag is only used " | |
| "in beam-based generation modes. You should set `num_beams>1` or unset `{flag_name}`." + fix_location | |
| ) | |
| if self.early_stopping is not False: | |
| warnings.warn( | |
| single_beam_wrong_parameter_msg.format(flag_name="early_stopping", flag_value=self.early_stopping), | |
| UserWarning, | |
| ) | |
| if self.num_beam_groups != 1: | |
| warnings.warn( | |
| single_beam_wrong_parameter_msg.format( | |
| flag_name="num_beam_groups", flag_value=self.num_beam_groups | |
| ), | |
| UserWarning, | |
| ) | |
| if self.diversity_penalty != 0.0: | |
| warnings.warn( | |
| single_beam_wrong_parameter_msg.format( | |
| flag_name="diversity_penalty", flag_value=self.diversity_penalty | |
| ), | |
| UserWarning, | |
| ) | |
| if self.length_penalty != 1.0: | |
| warnings.warn( | |
| single_beam_wrong_parameter_msg.format(flag_name="length_penalty", flag_value=self.length_penalty), | |
| UserWarning, | |
| ) | |
| if self.constraints is not None: | |
| warnings.warn( | |
| single_beam_wrong_parameter_msg.format(flag_name="constraints", flag_value=self.constraints), | |
| UserWarning, | |
| ) | |
| # 3. detect incorrect paramaterization specific to advanced beam modes | |
| else: | |
| # constrained beam search | |
| if self.constraints is not None: | |
| constrained_wrong_parameter_msg = ( | |
| "`constraints` is not `None`, triggering constrained beam search. However, `{flag_name}` is set " | |
| "to `{flag_value}`, which is incompatible with this generation mode. Set `constraints=None` or " | |
| "unset `{flag_name}` to continue." + fix_location | |
| ) | |
| if self.do_sample is True: | |
| raise ValueError( | |
| constrained_wrong_parameter_msg.format(flag_name="do_sample", flag_value=self.do_sample) | |
| ) | |
| if self.num_beam_groups != 1: | |
| raise ValueError( | |
| constrained_wrong_parameter_msg.format( | |
| flag_name="num_beam_groups", flag_value=self.num_beam_groups | |
| ) | |
| ) | |
| # group beam search | |
| if self.diversity_penalty != 0.0 or self.num_beam_groups != 1: | |
| group_error_prefix = ( | |
| "`diversity_penalty` is not 0.0 or `num_beam_groups` is not 1, triggering group beam search. In " | |
| "this generation mode, " | |
| ) | |
| if self.do_sample is True: | |
| raise ValueError(group_error_prefix + "`do_sample` must be set to `False`") | |
| if self.num_beams % self.num_beam_groups != 0: | |
| raise ValueError(group_error_prefix + "`num_beams` should be divisible by `num_beam_groups`") | |
| if self.diversity_penalty == 0.0: | |
| raise ValueError( | |
| group_error_prefix | |
| + "`diversity_penalty` should be greater than `0.0`, otherwise your groups will be identical." | |
| ) | |
| # 4. check `num_return_sequences` | |
| if self.num_return_sequences != 1: | |
| if self.num_beams == 1: | |
| if self.do_sample is False: | |
| raise ValueError( | |
| "Greedy methods without beam search do not support `num_return_sequences` different than 1 " | |
| f"(got {self.num_return_sequences})." | |
| ) | |
| elif self.num_return_sequences > self.num_beams: | |
| raise ValueError( | |
| f"`num_return_sequences` ({self.num_return_sequences}) has to be smaller or equal to `num_beams` " | |
| f"({self.num_beams})." | |
| ) | |
| def save_pretrained( | |
| self, | |
| save_directory: Union[str, os.PathLike], | |
| config_file_name: Optional[Union[str, os.PathLike]] = None, | |
| push_to_hub: bool = False, | |
| **kwargs, | |
| ): | |
| r""" | |
| Save a generation configuration object to the directory `save_directory`, so that it can be re-loaded using the | |
| [`~GenerationConfig.from_pretrained`] class method. | |
| Args: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory where the configuration JSON file will be saved (will be created if it does not exist). | |
| config_file_name (`str` or `os.PathLike`, *optional*, defaults to `"generation_config.json"`): | |
| Name of the generation configuration JSON file to be saved in `save_directory`. | |
| push_to_hub (`bool`, *optional*, defaults to `False`): | |
| Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the | |
| repository you want to push to with `repo_id` (will default to the name of `save_directory` in your | |
| namespace). | |
| kwargs (`Dict[str, Any]`, *optional*): | |
| Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. | |
| """ | |
| # At save time, validate the instance -- if any warning/exception is thrown, we refuse to save the instance | |
| try: | |
| with warnings.catch_warnings(record=True) as caught_warnings: | |
| self.validate() | |
| for w in caught_warnings: | |
| raise ValueError(w.message) | |
| except ValueError as exc: | |
| warnings.warn( | |
| "The generation config instance is invalid -- `.validate()` throws warnings and/or exceptions. " | |
| "Fix these issues to save the configuration. This warning will be raised to an exception in v4.34." | |
| "\n\nThrown during validation:\n" + str(exc), | |
| UserWarning, | |
| ) | |
| return | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| if use_auth_token is not None: | |
| warnings.warn( | |
| "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
| ) | |
| if kwargs.get("token", None) is not None: | |
| raise ValueError( | |
| "`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
| ) | |
| kwargs["token"] = use_auth_token | |
| config_file_name = config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME | |
| if os.path.isfile(save_directory): | |
| raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") | |
| os.makedirs(save_directory, exist_ok=True) | |
| if push_to_hub: | |
| commit_message = kwargs.pop("commit_message", None) | |
| repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) | |
| repo_id = self._create_repo(repo_id, **kwargs) | |
| files_timestamps = self._get_files_timestamps(save_directory) | |
| output_config_file = os.path.join(save_directory, config_file_name) | |
| self.to_json_file(output_config_file, use_diff=True) | |
| logger.info(f"Configuration saved in {output_config_file}") | |
| if push_to_hub: | |
| self._upload_modified_files( | |
| save_directory, | |
| repo_id, | |
| files_timestamps, | |
| commit_message=commit_message, | |
| token=kwargs.get("token"), | |
| ) | |
| def from_pretrained( | |
| cls, | |
| pretrained_model_name: Union[str, os.PathLike], | |
| config_file_name: Optional[Union[str, os.PathLike]] = None, | |
| cache_dir: Optional[Union[str, os.PathLike]] = None, | |
| force_download: bool = False, | |
| local_files_only: bool = False, | |
| token: Optional[Union[str, bool]] = None, | |
| revision: str = "main", | |
| **kwargs, | |
| ) -> "GenerationConfig": | |
| r""" | |
| Instantiate a [`GenerationConfig`] from a generation configuration file. | |
| Args: | |
| pretrained_model_name (`str` or `os.PathLike`): | |
| This can be either: | |
| - a string, the *model id* of a pretrained model configuration hosted inside a model repo on | |
| huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or | |
| namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. | |
| - a path to a *directory* containing a configuration file saved using the | |
| [`~GenerationConfig.save_pretrained`] method, e.g., `./my_model_directory/`. | |
| config_file_name (`str` or `os.PathLike`, *optional*, defaults to `"generation_config.json"`): | |
| Name of the generation configuration JSON file to be loaded from `pretrained_model_name`. | |
| cache_dir (`str` or `os.PathLike`, *optional*): | |
| Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
| standard cache should not be used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force to (re-)download the configuration files and override the cached versions if | |
| they exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to delete incompletely received file. Attempts to resume the download if such a file | |
| exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
| token (`str` or `bool`, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use | |
| the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
| identifier allowed by git. | |
| <Tip> | |
| To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". | |
| </Tip> | |
| return_unused_kwargs (`bool`, *optional*, defaults to `False`): | |
| If `False`, then this function returns just the final configuration object. | |
| If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a | |
| dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the | |
| part of `kwargs` which has not been used to update `config` and is otherwise ignored. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can | |
| specify the folder name here. | |
| kwargs (`Dict[str, Any]`, *optional*): | |
| The values in kwargs of any keys which are configuration attributes will be used to override the loaded | |
| values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled | |
| by the `return_unused_kwargs` keyword parameter. | |
| Returns: | |
| [`GenerationConfig`]: The configuration object instantiated from this pretrained model. | |
| Examples: | |
| ```python | |
| >>> from transformers import GenerationConfig | |
| >>> # Download configuration from huggingface.co and cache. | |
| >>> generation_config = GenerationConfig.from_pretrained("gpt2") | |
| >>> # E.g. config was saved using *save_pretrained('./test/saved_model/')* | |
| >>> generation_config.save_pretrained("./test/saved_model/") | |
| >>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/") | |
| >>> # You can also specify configuration names to your generation configuration file | |
| >>> generation_config.save_pretrained("./test/saved_model/", config_file_name="my_configuration.json") | |
| >>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/", "my_configuration.json") | |
| >>> # If you'd like to try a minor variation to an existing configuration, you can also pass generation | |
| >>> # arguments to `.from_pretrained()`. Be mindful that typos and unused arguments will be ignored | |
| >>> generation_config, unused_kwargs = GenerationConfig.from_pretrained( | |
| ... "gpt2", top_k=1, foo=False, do_sample=True, return_unused_kwargs=True | |
| ... ) | |
| >>> generation_config.top_k | |
| 1 | |
| >>> unused_kwargs | |
| {'foo': False} | |
| ```""" | |
| config_file_name = config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| subfolder = kwargs.pop("subfolder", "") | |
| from_pipeline = kwargs.pop("_from_pipeline", None) | |
| from_auto_class = kwargs.pop("_from_auto", False) | |
| commit_hash = kwargs.pop("_commit_hash", None) | |
| if use_auth_token is not None: | |
| warnings.warn( | |
| "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
| ) | |
| if token is not None: | |
| raise ValueError( | |
| "`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
| ) | |
| token = use_auth_token | |
| user_agent = {"file_type": "config", "from_auto_class": from_auto_class} | |
| if from_pipeline is not None: | |
| user_agent["using_pipeline"] = from_pipeline | |
| config_path = os.path.join(pretrained_model_name, config_file_name) | |
| config_path = str(config_path) | |
| is_local = os.path.exists(config_path) | |
| if os.path.isfile(os.path.join(subfolder, config_path)): | |
| # Special case when config_path is a local file | |
| resolved_config_file = config_path | |
| is_local = True | |
| elif is_remote_url(config_path): | |
| configuration_file = config_path | |
| resolved_config_file = download_url(config_path) | |
| else: | |
| configuration_file = config_file_name | |
| try: | |
| # Load from local folder or from cache or download from model Hub and cache | |
| resolved_config_file = cached_file( | |
| pretrained_model_name, | |
| configuration_file, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| local_files_only=local_files_only, | |
| use_auth_token=token, | |
| user_agent=user_agent, | |
| revision=revision, | |
| subfolder=subfolder, | |
| _commit_hash=commit_hash, | |
| ) | |
| commit_hash = extract_commit_hash(resolved_config_file, commit_hash) | |
| except EnvironmentError: | |
| # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to | |
| # the original exception. | |
| raise | |
| except Exception: | |
| # For any other exception, we throw a generic error. | |
| raise EnvironmentError( | |
| f"Can't load the configuration of '{pretrained_model_name}'. If you were trying to load it" | |
| " from 'https://huggingface.co/models', make sure you don't have a local directory with the same" | |
| f" name. Otherwise, make sure '{pretrained_model_name}' is the correct path to a directory" | |
| f" containing a {configuration_file} file" | |
| ) | |
| try: | |
| # Load config dict | |
| config_dict = cls._dict_from_json_file(resolved_config_file) | |
| config_dict["_commit_hash"] = commit_hash | |
| except (json.JSONDecodeError, UnicodeDecodeError): | |
| raise EnvironmentError( | |
| f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file." | |
| ) | |
| if is_local: | |
| logger.info(f"loading configuration file {resolved_config_file}") | |
| else: | |
| logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}") | |
| config = cls.from_dict(config_dict, **kwargs) | |
| config._original_object_hash = hash(config) # Hash to detect whether the instance was modified | |
| return config | |
| def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]): | |
| with open(json_file, "r", encoding="utf-8") as reader: | |
| text = reader.read() | |
| return json.loads(text) | |
| def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "GenerationConfig": | |
| """ | |
| Instantiates a [`GenerationConfig`] from a Python dictionary of parameters. | |
| Args: | |
| config_dict (`Dict[str, Any]`): | |
| Dictionary that will be used to instantiate the configuration object. | |
| kwargs (`Dict[str, Any]`): | |
| Additional parameters from which to initialize the configuration object. | |
| Returns: | |
| [`GenerationConfig`]: The configuration object instantiated from those parameters. | |
| """ | |
| return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) | |
| # Those arguments may be passed along for our internal telemetry. | |
| # We remove them so they don't appear in `return_unused_kwargs`. | |
| kwargs.pop("_from_auto", None) | |
| kwargs.pop("_from_pipeline", None) | |
| # The commit hash might have been updated in the `config_dict`, we don't want the kwargs to erase that update. | |
| if "_commit_hash" in kwargs and "_commit_hash" in config_dict: | |
| kwargs["_commit_hash"] = config_dict["_commit_hash"] | |
| # The line below allows model-specific config to be loaded as well through kwargs, with safety checks. | |
| # See https://github.com/huggingface/transformers/pull/21269 | |
| config = cls(**{**config_dict, **kwargs}) | |
| unused_kwargs = config.update(**kwargs) | |
| logger.info(f"Generate config {config}") | |
| if return_unused_kwargs: | |
| return config, unused_kwargs | |
| else: | |
| return config | |
| def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None: | |
| """ | |
| Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None, | |
| converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"* | |
| string, which can then be stored in the json format. | |
| """ | |
| if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str): | |
| d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1] | |
| for value in d.values(): | |
| if isinstance(value, dict): | |
| self.dict_torch_dtype_to_str(value) | |
| def to_diff_dict(self) -> Dict[str, Any]: | |
| """ | |
| Removes all attributes from config which correspond to the default config attributes for better readability and | |
| serializes to a Python dictionary. | |
| Returns: | |
| `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, | |
| """ | |
| config_dict = self.to_dict() | |
| # get the default config dict | |
| default_config_dict = GenerationConfig().to_dict() | |
| serializable_config_dict = {} | |
| # only serialize values that differ from the default config | |
| for key, value in config_dict.items(): | |
| if key not in default_config_dict or key == "transformers_version" or value != default_config_dict[key]: | |
| serializable_config_dict[key] = value | |
| self.dict_torch_dtype_to_str(serializable_config_dict) | |
| return serializable_config_dict | |
| def to_dict(self) -> Dict[str, Any]: | |
| """ | |
| Serializes this instance to a Python dictionary. | |
| Returns: | |
| `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. | |
| """ | |
| output = copy.deepcopy(self.__dict__) | |
| # Fields to ignore at serialization time | |
| if "_commit_hash" in output: | |
| del output["_commit_hash"] | |
| if "_original_object_hash" in output: | |
| del output["_original_object_hash"] | |
| # Transformers version when serializing this file | |
| output["transformers_version"] = __version__ | |
| self.dict_torch_dtype_to_str(output) | |
| return output | |
| def to_json_string(self, use_diff: bool = True, ignore_metadata: bool = False) -> str: | |
| """ | |
| Serializes this instance to a JSON string. | |
| Args: | |
| use_diff (`bool`, *optional*, defaults to `True`): | |
| If set to `True`, only the difference between the config instance and the default `GenerationConfig()` | |
| is serialized to JSON string. | |
| ignore_metadata (`bool`, *optional*, defaults to `False`): | |
| Whether to ignore the metadata fields present in the instance | |
| Returns: | |
| `str`: String containing all the attributes that make up this configuration instance in JSON format. | |
| """ | |
| if use_diff is True: | |
| config_dict = self.to_diff_dict() | |
| else: | |
| config_dict = self.to_dict() | |
| if ignore_metadata: | |
| for metadata_field in METADATA_FIELDS: | |
| config_dict.pop(metadata_field, None) | |
| return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" | |
| def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True): | |
| """ | |
| Save this instance to a JSON file. | |
| Args: | |
| json_file_path (`str` or `os.PathLike`): | |
| Path to the JSON file in which this configuration instance's parameters will be saved. | |
| use_diff (`bool`, *optional*, defaults to `True`): | |
| If set to `True`, only the difference between the config instance and the default `GenerationConfig()` | |
| is serialized to JSON file. | |
| """ | |
| with open(json_file_path, "w", encoding="utf-8") as writer: | |
| writer.write(self.to_json_string(use_diff=use_diff)) | |
| def from_model_config(cls, model_config: PretrainedConfig) -> "GenerationConfig": | |
| """ | |
| Instantiates a [`GenerationConfig`] from a [`PretrainedConfig`]. This function is useful to convert legacy | |
| [`PretrainedConfig`] objects, which may contain generation parameters, into a stand-alone [`GenerationConfig`]. | |
| Args: | |
| model_config (`PretrainedConfig`): | |
| The model config that will be used to instantiate the generation config. | |
| Returns: | |
| [`GenerationConfig`]: The configuration object instantiated from those parameters. | |
| """ | |
| config_dict = model_config.to_dict() | |
| config_dict.pop("_from_model_config", None) | |
| config = cls.from_dict(config_dict, return_unused_kwargs=False, _from_model_config=True) | |
| # Special case: some models have generation attributes set in the decoder. Use them if still unset in the | |
| # generation config. | |
| for decoder_name in ("decoder", "generator", "text_config"): | |
| if decoder_name in config_dict: | |
| default_generation_config = GenerationConfig() | |
| decoder_config = config_dict[decoder_name] | |
| for attr in config.to_dict().keys(): | |
| if attr in decoder_config and getattr(config, attr) == getattr(default_generation_config, attr): | |
| setattr(config, attr, decoder_config[attr]) | |
| config._original_object_hash = hash(config) # Hash to detect whether the instance was modified | |
| return config | |
| def update(self, **kwargs): | |
| """ | |
| Updates attributes of this class instance with attributes from `kwargs` if they match existing atributtes, | |
| returning all the unused kwargs. | |
| Args: | |
| kwargs (`Dict[str, Any]`): | |
| Dictionary of attributes to tentatively update this class. | |
| Returns: | |
| `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance. | |
| """ | |
| to_remove = [] | |
| for key, value in kwargs.items(): | |
| if hasattr(self, key): | |
| setattr(self, key, value) | |
| to_remove.append(key) | |
| # remove all the attributes that were updated, without modifying the input dict | |
| unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove} | |
| return unused_kwargs | |