VPCSinfo's picture
[ADD] added multi provider class and its structure part to handle it.
e5f5bde
from typing import Optional, Dict, Any
from dataclasses import dataclass
import os
from enum import Enum
import logging
from openai import OpenAI
from anthropic import Anthropic
import groq
import google.generativeai as palm
from smolagents import HfApiModel, CodeAgent, DuckDuckGoSearchTool, load_tool, tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.web_search import DuckDuckGoSearchTool
from tools.linkedin_job_search import LinkedInJobSearchTool
from tools.odoo_documentation_search import OdooDocumentationSearchTool
from tools.odoo_code_agent_16 import OdooCodeAgent16
from tools.odoo_code_agent_17 import OdooCodeAgent17
from tools.odoo_code_agent_18 import OdooCodeAgent18
from Gradio_UI import GradioUI
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
os.environ["TRANSFORMERS_OFFLINE"] = "1"
os.environ["TORCH_MPS_FORCE_CPU"] = "1"
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
final_answer = FinalAnswerTool()
visit_webpage = VisitWebpageTool()
web_search = DuckDuckGoSearchTool()
job_search_tool = LinkedInJobSearchTool()
odoo_documentation_search_tool = OdooDocumentationSearchTool()
odoo_code_agent_16_tool = OdooCodeAgent16(prompt_templates["system_prompt"])
odoo_code_agent_17_tool = OdooCodeAgent17(prompt_templates["system_prompt"])
odoo_code_agent_18_tool = OdooCodeAgent18(prompt_templates["system_prompt"])
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
class ModelProvider(Enum):
QWEN = "Qwen"
HUGGINGFACE = "HuggingFace"
OPENAI = "OpenAI"
ANTHROPIC = "Anthropic"
GROQ = "Groq"
GOOGLE = "Google"
CUSTOM = "Custom"
@dataclass
class ProviderConfig:
model_id: str
api_key_env_var: Optional[str] = None
model_name_env_var: Optional[str] = None
base_url_env_var: Optional[str] = None
default_max_tokens: int = 1000
default_temperature: float = 0.5
class LLMProviderManager:
def __init__(self):
self.providers_config = {
ModelProvider.QWEN: ProviderConfig(
model_id="Qwen/Qwen2.5-Coder-32B-Instruct"
),
ModelProvider.HUGGINGFACE: ProviderConfig(
model_id="https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud"
),
ModelProvider.OPENAI: ProviderConfig(
model_id="gpt-4",
api_key_env_var="OPENAI_API_KEY",
model_name_env_var="OPENAI_MODEL_NAME",
base_url_env_var="OPENAI_BASE_URL"
),
ModelProvider.ANTHROPIC: ProviderConfig(
model_id="claude-v1",
api_key_env_var="ANTHROPIC_API_KEY",
model_name_env_var="ANTHROPIC_MODEL_NAME",
base_url_env_var="ANTHROPIC_BASE_URL"
),
ModelProvider.GROQ: ProviderConfig(
model_id="mixtral-8x7b-32768",
api_key_env_var="GROQ_API_KEY",
model_name_env_var="GROQ_MODEL_NAME",
base_url_env_var="GROQ_BASE_URL"
),
ModelProvider.GOOGLE: ProviderConfig(
model_id="gemini-pro",
api_key_env_var="GOOGLE_API_KEY",
model_name_env_var="GOOGLE_MODEL_NAME",
base_url_env_var="GOOGLE_BASE_URL"
),
ModelProvider.CUSTOM: ProviderConfig(
model_id=None,
base_url_env_var="CUSTOM_BASE_URL"
)
}
def _get_api_key(self, provider: ModelProvider, custom_api_key: Optional[str] = None) -> Optional[str]:
config = self.providers_config[provider]
if custom_api_key:
return custom_api_key
return os.environ.get(config.api_key_env_var) if config.api_key_env_var else None
def _get_base_url(self, provider: ModelProvider) -> Optional[str]:
config = self.providers_config[provider]
return os.environ.get(config.base_url_env_var) if config.base_url_env_var else None
def _get_model_name(self, provider: ModelProvider) -> str:
config = self.providers_config[provider]
if config.model_name_env_var:
return os.environ.get(config.model_name_env_var, config.model_id)
return config.model_id
def initialize_provider(
self,
provider: ModelProvider,
custom_api_key: Optional[str] = None,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None
) -> Any:
"""Initialize a specific LLM provider with given configuration."""
try:
config = self.providers_config[provider]
api_key = self._get_api_key(provider, custom_api_key)
base_url = self._get_base_url(provider)
if provider in [ModelProvider.QWEN, ModelProvider.HUGGINGFACE, ModelProvider.CUSTOM]:
return self._initialize_hf_model(config, api_key, base_url, max_tokens, temperature)
provider_initializers = {
ModelProvider.OPENAI: self._initialize_openai,
ModelProvider.ANTHROPIC: self._initialize_anthropic,
ModelProvider.GROQ: self._initialize_groq,
ModelProvider.GOOGLE: self._initialize_google
}
initializer = provider_initializers.get(provider)
if not initializer:
raise ValueError(f"Unsupported provider: {provider}")
if provider == ModelProvider.GOOGLE:
client = initializer(api_key, base_url)
return client
else:
return initializer(api_key, base_url)
except Exception as e:
logger.error(f"Error initializing provider {provider}: {str(e)}")
raise
def _initialize_hf_model(
self,
config: ProviderConfig,
api_key: Optional[str],
base_url: Optional[str],
max_tokens: Optional[int],
temperature: Optional[float]
) -> HfApiModel:
model_kwargs = {
"max_tokens": max_tokens or config.default_max_tokens,
"temperature": temperature or config.default_temperature,
"model_id": config.model_id,
"custom_role_conversions": None
}
if api_key:
model_kwargs["api_key"] = api_key
if base_url:
model_kwargs["url"] = base_url
return HfApiModel(**model_kwargs)
def _initialize_openai(self, api_key: str, base_url: Optional[str]) -> OpenAI:
kwargs = {"api_key": api_key}
if base_url:
kwargs["base_url"] = base_url
return OpenAI(**kwargs)
def _initialize_anthropic(self, api_key: str, base_url: Optional[str]) -> Anthropic:
kwargs = {"api_key": api_key}
if base_url:
kwargs["base_url"] = base_url
return Anthropic(**kwargs)
def _initialize_groq(self, api_key: str, _: Optional[str]) -> groq.Groq:
return groq.Groq(api_key=api_key)
def _initialize_google(self, api_key: str, _: Optional[str]) -> Any:
palm.configure(api_key=api_key)
return palm
model_providers = {
"Qwen": {
"model_id": "Qwen/Qwen2.5-Coder-32B-Instruct",
"api_key_env_var": None
},
"HuggingFace": {
"model_id": "https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud",
"api_key_env_var": None
},
"OpenAI": {
"model_id": "gpt-4",
"api_key_env_var": "OPENAI_API_KEY",
"model_name_env_var": "OPENAI_MODEL_NAME",
"base_url_env_var": "OPENAI_BASE_URL"
},
"Anthropic": {
"model_id": "claude-v1",
"api_key_env_var": "ANTHROPIC_API_KEY",
"model_name_env_var": "ANTHROPIC_MODEL_NAME",
"base_url_env_var": "ANTHROPIC_BASE_URL"
},
"Groq": {
"model_id": "mixtral-8x7b-32768",
"api_key_env_var": "GROQ_API_KEY",
"model_name_env_var": "GROQ_MODEL_NAME",
"base_url_env_var": "GROQ_BASE_URL"
},
"Google": {
"model_id": "gemini-pro",
"api_key_env_var": "GOOGLE_API_KEY",
"model_name_env_var": "GOOGLE_MODEL_NAME",
"base_url_env_var": "GOOGLE_BASE_URL"
},
"Custom": {
"model_id": None,
"api_key_env_var": None,
"base_url_env_var": "CUSTOM_BASE_URL"
}
}
def launch_gradio_ui(additional_args: Optional[Dict[str, Any]] = None):
"""Launch the Gradio UI with the specified LLM provider configuration."""
if additional_args is None:
additional_args = {}
def generate_google_content(prompt: str, model: palm.GenerativeModel):
"""Helper function to generate content using the Google provider."""
try:
response = model.generate_content(prompt)
return response.text
except Exception as e:
logger.error(f"Google Palm API error: {str(e)}")
return f"Error generating text with Google Palm: {str(e)}"
provider_name = additional_args.get("selected_provider", "HuggingFace")
max_steps = int(additional_args.get("max_steps", 6))
max_tokens = int(additional_args.get("max_tokens", 1000))
temperature = float(additional_args.get("temperature", 0.5))
try:
provider = ModelProvider(provider_name)
provider_manager = LLMProviderManager()
custom_api_key = additional_args.get(f"{provider_name}_api_key")
model = provider_manager.initialize_provider(
provider=provider,
custom_api_key=custom_api_key,
max_tokens=max_tokens,
temperature=temperature
)
agent = CodeAgent(
model=generate_google_content if provider == ModelProvider.GOOGLE else model,
tools=[
final_answer, visit_webpage, web_search, image_generation_tool, get_current_time_in_timezone,
job_search_tool,
odoo_documentation_search_tool, odoo_code_agent_16_tool,
odoo_code_agent_17_tool, odoo_code_agent_18_tool
],
max_steps=max_steps,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()
except Exception as e:
logger.error(f"Error launching Gradio UI: {str(e)}")
raise
launch_gradio_ui()