Spaces:
Running
Running
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import gc | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import sys | |
| import types | |
| from contextlib import contextmanager | |
| from functools import partial | |
| import json | |
| import numpy as np | |
| import torch | |
| import torch.cuda.amp as amp | |
| import torch.distributed as dist | |
| import torchvision.transforms.functional as TF | |
| from tqdm import tqdm | |
| from .distributed.fsdp import shard_model | |
| from .modules.clip import CLIPModel | |
| from .modules.model import WanModel | |
| from .modules.t5 import T5EncoderModel | |
| from .modules.vae import WanVAE | |
| from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, | |
| get_sampling_sigmas, retrieve_timesteps) | |
| from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
| from wan.modules.posemb_layers import get_rotary_pos_embed | |
| from wan.utils.utils import resize_lanczos, calculate_new_dimensions | |
| def optimized_scale(positive_flat, negative_flat): | |
| # Calculate dot production | |
| dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) | |
| # Squared norm of uncondition | |
| squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 | |
| # st_star = v_cond^T * v_uncond / ||v_uncond||^2 | |
| st_star = dot_product / squared_norm | |
| return st_star | |
| class WanI2V: | |
| def __init__( | |
| self, | |
| config, | |
| checkpoint_dir, | |
| model_filename = None, | |
| model_type = None, | |
| base_model_type= None, | |
| text_encoder_filename= None, | |
| quantizeTransformer = False, | |
| dtype = torch.bfloat16, | |
| VAE_dtype = torch.float32, | |
| save_quantized = False, | |
| mixed_precision_transformer = False | |
| ): | |
| self.device = torch.device(f"cuda") | |
| self.config = config | |
| self.dtype = dtype | |
| self.VAE_dtype = VAE_dtype | |
| self.num_train_timesteps = config.num_train_timesteps | |
| self.param_dtype = config.param_dtype | |
| # shard_fn = partial(shard_model, device_id=device_id) | |
| self.text_encoder = T5EncoderModel( | |
| text_len=config.text_len, | |
| dtype=config.t5_dtype, | |
| device=torch.device('cpu'), | |
| checkpoint_path=text_encoder_filename, | |
| tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), | |
| shard_fn=None, | |
| ) | |
| self.vae_stride = config.vae_stride | |
| self.patch_size = config.patch_size | |
| self.vae = WanVAE( | |
| vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype = VAE_dtype, | |
| device=self.device) | |
| self.clip = CLIPModel( | |
| dtype=config.clip_dtype, | |
| device=self.device, | |
| checkpoint_path=os.path.join(checkpoint_dir , | |
| config.clip_checkpoint), | |
| tokenizer_path=os.path.join(checkpoint_dir , config.clip_tokenizer)) | |
| logging.info(f"Creating WanModel from {model_filename[-1]}") | |
| from mmgp import offload | |
| # fantasy = torch.load("c:/temp/fantasy.ckpt") | |
| # proj_model = fantasy["proj_model"] | |
| # audio_processor = fantasy["audio_processor"] | |
| # offload.safetensors2.torch_write_file(proj_model, "proj_model.safetensors") | |
| # offload.safetensors2.torch_write_file(audio_processor, "audio_processor.safetensors") | |
| # for k,v in audio_processor.items(): | |
| # audio_processor[k] = v.to(torch.bfloat16) | |
| # with open("fantasy_config.json", "r", encoding="utf-8") as reader: | |
| # config_text = reader.read() | |
| # config_json = json.loads(config_text) | |
| # offload.safetensors2.torch_write_file(audio_processor, "audio_processor_bf16.safetensors", config=config_json) | |
| # model_filename = [model_filename, "audio_processor_bf16.safetensors"] | |
| # model_filename = "c:/temp/i2v480p/diffusion_pytorch_model-00001-of-00007.safetensors" | |
| # dtype = torch.float16 | |
| base_config_file = f"configs/{base_model_type}.json" | |
| forcedConfigPath = base_config_file if len(model_filename) > 1 else None | |
| self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath= base_config_file, forcedConfigPath= forcedConfigPath) | |
| self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype) | |
| offload.change_dtype(self.model, dtype, True) | |
| # offload.save_model(self.model, "wan2.1_image2video_720p_14B_mbf16.safetensors", config_file_path="c:/temp/i2v720p/config.json") | |
| # offload.save_model(self.model, "wan2.1_image2video_720p_14B_quanto_mbf16_int8.safetensors",do_quantize=True, config_file_path="c:/temp/i2v720p/config.json") | |
| # offload.save_model(self.model, "wan2.1_image2video_720p_14B_quanto_mfp16_int8.safetensors",do_quantize=True, config_file_path="c:/temp/i2v720p/config.json") | |
| # offload.save_model(self.model, "wan2.1_Fun_InP_1.3B_bf16_bis.safetensors") | |
| self.model.eval().requires_grad_(False) | |
| if save_quantized: | |
| from wgp import save_quantized_model | |
| save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file) | |
| self.sample_neg_prompt = config.sample_neg_prompt | |
| def generate(self, | |
| input_prompt, | |
| image_start, | |
| image_end = None, | |
| height =720, | |
| width = 1280, | |
| fit_into_canvas = True, | |
| frame_num=81, | |
| shift=5.0, | |
| sample_solver='unipc', | |
| sampling_steps=40, | |
| guide_scale=5.0, | |
| n_prompt="", | |
| seed=-1, | |
| callback = None, | |
| enable_RIFLEx = False, | |
| VAE_tile_size= 0, | |
| joint_pass = False, | |
| slg_layers = None, | |
| slg_start = 0.0, | |
| slg_end = 1.0, | |
| cfg_star_switch = True, | |
| cfg_zero_step = 5, | |
| audio_scale=None, | |
| audio_cfg_scale=None, | |
| audio_proj=None, | |
| audio_context_lens=None, | |
| model_filename = None, | |
| **bbargs | |
| ): | |
| r""" | |
| Generates video frames from input image and text prompt using diffusion process. | |
| Args: | |
| input_prompt (`str`): | |
| Text prompt for content generation. | |
| image_start (PIL.Image.Image): | |
| Input image tensor. Shape: [3, H, W] | |
| max_area (`int`, *optional*, defaults to 720*1280): | |
| Maximum pixel area for latent space calculation. Controls video resolution scaling | |
| frame_num (`int`, *optional*, defaults to 81): | |
| How many frames to sample from a video. The number should be 4n+1 | |
| shift (`float`, *optional*, defaults to 5.0): | |
| Noise schedule shift parameter. Affects temporal dynamics | |
| [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0. | |
| sample_solver (`str`, *optional*, defaults to 'unipc'): | |
| Solver used to sample the video. | |
| sampling_steps (`int`, *optional*, defaults to 40): | |
| Number of diffusion sampling steps. Higher values improve quality but slow generation | |
| guide_scale (`float`, *optional*, defaults 5.0): | |
| Classifier-free guidance scale. Controls prompt adherence vs. creativity | |
| n_prompt (`str`, *optional*, defaults to ""): | |
| Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` | |
| seed (`int`, *optional*, defaults to -1): | |
| Random seed for noise generation. If -1, use random seed | |
| offload_model (`bool`, *optional*, defaults to True): | |
| If True, offloads models to CPU during generation to save VRAM | |
| Returns: | |
| torch.Tensor: | |
| Generated video frames tensor. Dimensions: (C, N H, W) where: | |
| - C: Color channels (3 for RGB) | |
| - N: Number of frames (81) | |
| - H: Frame height (from max_area) | |
| - W: Frame width from max_area) | |
| """ | |
| add_frames_for_end_image = "image2video" in model_filename or "fantasy" in model_filename | |
| image_start = TF.to_tensor(image_start) | |
| lat_frames = int((frame_num - 1) // self.vae_stride[0] + 1) | |
| any_end_frame = image_end !=None | |
| if any_end_frame: | |
| any_end_frame = True | |
| image_end = TF.to_tensor(image_end) | |
| if add_frames_for_end_image: | |
| frame_num +=1 | |
| lat_frames = int((frame_num - 2) // self.vae_stride[0] + 2) | |
| h, w = image_start.shape[1:] | |
| h, w = calculate_new_dimensions(height, width, h, w, fit_into_canvas) | |
| lat_h = round( | |
| h // self.vae_stride[1] // | |
| self.patch_size[1] * self.patch_size[1]) | |
| lat_w = round( | |
| w // self.vae_stride[2] // | |
| self.patch_size[2] * self.patch_size[2]) | |
| h = lat_h * self.vae_stride[1] | |
| w = lat_w * self.vae_stride[2] | |
| clip_image_size = self.clip.model.image_size | |
| img_interpolated = resize_lanczos(image_start, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device) #, self.dtype | |
| image_start = resize_lanczos(image_start, clip_image_size, clip_image_size) | |
| image_start = image_start.sub_(0.5).div_(0.5).to(self.device) #, self.dtype | |
| if image_end!= None: | |
| img_interpolated2 = resize_lanczos(image_end, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device) #, self.dtype | |
| image_end = resize_lanczos(image_end, clip_image_size, clip_image_size) | |
| image_end = image_end.sub_(0.5).div_(0.5).to(self.device) #, self.dtype | |
| max_seq_len = lat_frames * lat_h * lat_w // ( self.patch_size[1] * self.patch_size[2]) | |
| seed = seed if seed >= 0 else random.randint(0, sys.maxsize) | |
| seed_g = torch.Generator(device=self.device) | |
| seed_g.manual_seed(seed) | |
| noise = torch.randn(16, lat_frames, lat_h, lat_w, dtype=torch.float32, generator=seed_g, device=self.device) | |
| msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device) | |
| if any_end_frame: | |
| msk[:, 1: -1] = 0 | |
| if add_frames_for_end_image: | |
| msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:-1], torch.repeat_interleave(msk[:, -1:], repeats=4, dim=1) ], dim=1) | |
| else: | |
| msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1) | |
| else: | |
| msk[:, 1:] = 0 | |
| msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1) | |
| msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) | |
| msk = msk.transpose(1, 2)[0] | |
| if n_prompt == "": | |
| n_prompt = self.sample_neg_prompt | |
| if self._interrupt: | |
| return None | |
| # preprocess | |
| context = self.text_encoder([input_prompt], self.device)[0] | |
| context_null = self.text_encoder([n_prompt], self.device)[0] | |
| context = context.to(self.dtype) | |
| context_null = context_null.to(self.dtype) | |
| if self._interrupt: | |
| return None | |
| clip_context = self.clip.visual([image_start[:, None, :, :]]) | |
| from mmgp import offload | |
| offload.last_offload_obj.unload_all() | |
| if any_end_frame: | |
| mean2 = 0 | |
| enc= torch.concat([ | |
| img_interpolated, | |
| torch.full( (3, frame_num-2, h, w), mean2, device=self.device, dtype= self.VAE_dtype), | |
| img_interpolated2, | |
| ], dim=1).to(self.device) | |
| else: | |
| enc= torch.concat([ | |
| img_interpolated, | |
| torch.zeros(3, frame_num-1, h, w, device=self.device, dtype= self.VAE_dtype) | |
| ], dim=1).to(self.device) | |
| image_start, image_end, img_interpolated, img_interpolated2 = None, None, None, None | |
| lat_y = self.vae.encode([enc], VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0] | |
| y = torch.concat([msk, lat_y]) | |
| lat_y = None | |
| # evaluation mode | |
| if sample_solver == 'unipc': | |
| sample_scheduler = FlowUniPCMultistepScheduler( | |
| num_train_timesteps=self.num_train_timesteps, | |
| shift=1, | |
| use_dynamic_shifting=False) | |
| sample_scheduler.set_timesteps( | |
| sampling_steps, device=self.device, shift=shift) | |
| timesteps = sample_scheduler.timesteps | |
| elif sample_solver == 'dpm++': | |
| sample_scheduler = FlowDPMSolverMultistepScheduler( | |
| num_train_timesteps=self.num_train_timesteps, | |
| shift=1, | |
| use_dynamic_shifting=False) | |
| sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) | |
| timesteps, _ = retrieve_timesteps( | |
| sample_scheduler, | |
| device=self.device, | |
| sigmas=sampling_sigmas) | |
| else: | |
| raise NotImplementedError("Unsupported solver.") | |
| # sample videos | |
| latent = noise | |
| batch_size = 1 | |
| freqs = get_rotary_pos_embed(latent.shape[1:], enable_RIFLEx= enable_RIFLEx) | |
| kwargs = { 'clip_fea': clip_context, 'y': y, 'freqs' : freqs, 'pipeline' : self, 'callback' : callback } | |
| if audio_proj != None: | |
| kwargs.update({ | |
| "audio_proj": audio_proj.to(self.dtype), | |
| "audio_context_lens": audio_context_lens, | |
| }) | |
| if self.model.enable_cache: | |
| self.model.previous_residual = [None] * (3 if audio_cfg_scale !=None else 2) | |
| self.model.compute_teacache_threshold(self.model.cache_start_step, timesteps, self.model.teacache_multiplier) | |
| # self.model.to(self.device) | |
| if callback != None: | |
| callback(-1, None, True) | |
| latent = latent.to(self.device) | |
| for i, t in enumerate(tqdm(timesteps)): | |
| offload.set_step_no_for_lora(self.model, i) | |
| kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None | |
| latent_model_input = latent | |
| timestep = [t] | |
| timestep = torch.stack(timestep).to(self.device) | |
| kwargs.update({ | |
| 't' :timestep, | |
| 'current_step' :i, | |
| }) | |
| if guide_scale == 1: | |
| noise_pred = self.model( [latent_model_input], context=[context], audio_scale = None if audio_scale == None else [audio_scale], x_id=0, **kwargs, )[0] | |
| if self._interrupt: | |
| return None | |
| elif joint_pass: | |
| if audio_proj == None: | |
| noise_pred_cond, noise_pred_uncond = self.model( | |
| [latent_model_input, latent_model_input], | |
| context=[context, context_null], | |
| **kwargs) | |
| else: | |
| noise_pred_cond, noise_pred_noaudio, noise_pred_uncond = self.model( | |
| [latent_model_input, latent_model_input, latent_model_input], | |
| context=[context, context, context_null], | |
| audio_scale = [audio_scale, None, None ], | |
| **kwargs) | |
| if self._interrupt: | |
| return None | |
| else: | |
| noise_pred_cond = self.model( [latent_model_input], context=[context], audio_scale = None if audio_scale == None else [audio_scale], x_id=0, **kwargs, )[0] | |
| if self._interrupt: | |
| return None | |
| if audio_proj != None: | |
| noise_pred_noaudio = self.model( | |
| [latent_model_input], | |
| x_id=1, | |
| context=[context], | |
| **kwargs, | |
| )[0] | |
| if self._interrupt: | |
| return None | |
| noise_pred_uncond = self.model( | |
| [latent_model_input], | |
| x_id=1 if audio_scale == None else 2, | |
| context=[context_null], | |
| **kwargs, | |
| )[0] | |
| if self._interrupt: | |
| return None | |
| del latent_model_input | |
| if guide_scale > 1: | |
| # CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/ | |
| if cfg_star_switch: | |
| positive_flat = noise_pred_cond.view(batch_size, -1) | |
| negative_flat = noise_pred_uncond.view(batch_size, -1) | |
| alpha = optimized_scale(positive_flat,negative_flat) | |
| alpha = alpha.view(batch_size, 1, 1, 1) | |
| if (i <= cfg_zero_step): | |
| noise_pred = noise_pred_cond*0. # it would be faster not to compute noise_pred... | |
| else: | |
| noise_pred_uncond *= alpha | |
| if audio_scale == None: | |
| noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond) | |
| else: | |
| noise_pred = noise_pred_uncond + guide_scale * (noise_pred_noaudio - noise_pred_uncond) + audio_cfg_scale * (noise_pred_cond - noise_pred_noaudio) | |
| noise_pred_uncond, noise_pred_noaudio = None, None | |
| temp_x0 = sample_scheduler.step( | |
| noise_pred.unsqueeze(0), | |
| t, | |
| latent.unsqueeze(0), | |
| return_dict=False, | |
| generator=seed_g)[0] | |
| latent = temp_x0.squeeze(0) | |
| del temp_x0 | |
| del timestep | |
| if callback is not None: | |
| callback(i, latent, False) | |
| x0 = [latent] | |
| video = self.vae.decode(x0, VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0] | |
| if any_end_frame and add_frames_for_end_image: | |
| # video[:, -1:] = img_interpolated2 | |
| video = video[:, :-1] | |
| del noise, latent | |
| del sample_scheduler | |
| return video | |