#!/usr/bin/env python import os import re import tempfile from collections.abc import Iterator from threading import Thread import requests # <-- For SERPHouse web search import cv2 import gradio as gr import spaces import torch from loguru import logger from PIL import Image from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer # CSV/TXT 분석 import pandas as pd # PDF 텍스트 추출 import PyPDF2 ############################################################################## # SERPHouse API key for web search ############################################################################## SERPHOUSE_API_KEY = "V38CNn4HXpLtynJQyOeoUensTEYoFy8PBUxKpDqAW1pawT1vfJ2BWtPQ98h6" ############################################################################## # [새로 추가] 사용자 메시지로부터 간단히 키워드 추출하는 함수 예시 # - 실제 환경에 맞게 stopwords, 형태소 분석 등 고도화 가능 ############################################################################## def extract_keywords(text: str, top_k: int = 5) -> str: # 1) 소문자로 text = text.lower() # 2) 알파벳/숫자/공백 제외 문자 제거 text = re.sub(r"[^a-z0-9\s]", "", text) # 3) 공백단위 토큰 tokens = text.split() # 4) 우선은 앞에서 몇 개 토큰만 사용 (top_k=5) # - 필요시 stopword 제거나 빈도수 계산 후 상위 k개 추출하도록 변경 가능 key_tokens = tokens[:top_k] # 5) 공백으로 join return " ".join(key_tokens) ############################################################################## # Simple function to call the SERPHouse Live endpoint # https://api.serphouse.com/serp/live ############################################################################## def do_web_search(query: str) -> str: """ Calls SERPHouse live endpoint with the given query (q). Returns top-20 results' titles as a bullet list, or an error message. """ try: url = "https://api.serphouse.com/serp/live" params = { "q": query, "domain": "google.com", "lang": "en", "device": "desktop", "serp_type": "web", "num_result": "20", # [새로 추가] 상위 20개 결과 "api_token": SERPHOUSE_API_KEY, } resp = requests.get(url, params=params, timeout=30) resp.raise_for_status() # Raise an exception for 4xx/5xx errors data = resp.json() results = data.get("results", {}) organic = results.get("results", {}).get("organic", []) if not organic: return "No web search results found." # 상위 20개 제목만 뽑아서 정리 summary_lines = [] for idx, item in enumerate(organic[:20], start=1): title = item.get("title", "No Title") summary_lines.append(f"{idx}. {title}") # 20개를 \n 으로 연결 return "\n".join(summary_lines) except Exception as e: logger.error(f"Web search failed: {e}") return f"Web search failed: {str(e)}" MAX_CONTENT_CHARS = 4000 # 너무 큰 파일을 막기 위해 최대 표시 4000자 model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it") processor = AutoProcessor.from_pretrained(model_id, padding_side="left") model = Gemma3ForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager" ) MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) ################################################## # CSV, TXT, PDF 분석 함수 ################################################## def analyze_csv_file(path: str) -> str: try: df = pd.read_csv(path) if df.shape[0] > 50 or df.shape[1] > 10: df = df.iloc[:50, :10] df_str = df.to_string() if len(df_str) > MAX_CONTENT_CHARS: df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" except Exception as e: return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}" def analyze_txt_file(path: str) -> str: try: with open(path, "r", encoding="utf-8") as f: text = f.read() if len(text) > MAX_CONTENT_CHARS: text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" except Exception as e: return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}" def pdf_to_markdown(pdf_path: str) -> str: text_chunks = [] try: with open(pdf_path, "rb") as f: reader = PyPDF2.PdfReader(f) max_pages = min(5, len(reader.pages)) for page_num in range(max_pages): page = reader.pages[page_num] page_text = page.extract_text() or "" page_text = page_text.strip() if page_text: if len(page_text) > MAX_CONTENT_CHARS // max_pages: page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)" text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n") if len(reader.pages) > max_pages: text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...") except Exception as e: return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}" full_text = "\n".join(text_chunks) if len(full_text) > MAX_CONTENT_CHARS: full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" ################################################## # 이미지/비디오 업로드 제한 검사 ################################################## def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: image_count = 0 video_count = 0 for path in paths: if path.endswith(".mp4"): video_count += 1 elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): image_count += 1 return image_count, video_count def count_files_in_history(history: list[dict]) -> tuple[int, int]: image_count = 0 video_count = 0 for item in history: if item["role"] != "user" or isinstance(item["content"], str): continue if isinstance(item["content"], list) and len(item["content"]) > 0: file_path = item["content"][0] if isinstance(file_path, str): if file_path.endswith(".mp4"): video_count += 1 elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): image_count += 1 return image_count, video_count def validate_media_constraints(message: dict, history: list[dict]) -> bool: media_files = [] for f in message["files"]: if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"): media_files.append(f) new_image_count, new_video_count = count_files_in_new_message(media_files) history_image_count, history_video_count = count_files_in_history(history) image_count = history_image_count + new_image_count video_count = history_video_count + new_video_count if video_count > 1: gr.Warning("Only one video is supported.") return False if video_count == 1: if image_count > 0: gr.Warning("Mixing images and videos is not allowed.") return False if "" in message["text"]: gr.Warning("Using tags with video files is not supported.") return False if video_count == 0 and image_count > MAX_NUM_IMAGES: gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") return False if "" in message["text"]: image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] image_tag_count = message["text"].count("") if image_tag_count != len(image_files): gr.Warning("The number of tags in the text does not match the number of image files.") return False return True ################################################## # 비디오 처리 ################################################## def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: vidcap = cv2.VideoCapture(video_path) fps = vidcap.get(cv2.CAP_PROP_FPS) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_interval = max(int(fps), int(total_frames / 10)) frames = [] for i in range(0, total_frames, frame_interval): vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) success, image = vidcap.read() if success: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image) timestamp = round(i / fps, 2) frames.append((pil_image, timestamp)) if len(frames) >= 5: break vidcap.release() return frames def process_video(video_path: str) -> list[dict]: content = [] frames = downsample_video(video_path) for frame in frames: pil_image, timestamp = frame with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: pil_image.save(temp_file.name) content.append({"type": "text", "text": f"Frame {timestamp}:"}) content.append({"type": "image", "url": temp_file.name}) logger.debug(f"{content=}") return content ################################################## # interleaved 처리 ################################################## def process_interleaved_images(message: dict) -> list[dict]: parts = re.split(r"()", message["text"]) content = [] image_index = 0 image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] for part in parts: if part == "" and image_index < len(image_files): content.append({"type": "image", "url": image_files[image_index]}) image_index += 1 elif part.strip(): content.append({"type": "text", "text": part.strip()}) else: if isinstance(part, str) and part != "": content.append({"type": "text", "text": part}) return content ################################################## # PDF + CSV + TXT + 이미지/비디오 ################################################## def is_image_file(file_path: str) -> bool: return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) def is_video_file(file_path: str) -> bool: return file_path.endswith(".mp4") def is_document_file(file_path: str) -> bool: return (file_path.lower().endswith(".pdf") or file_path.lower().endswith(".csv") or file_path.lower().endswith(".txt")) def process_new_user_message(message: dict) -> list[dict]: if not message["files"]: return [{"type": "text", "text": message["text"]}] video_files = [f for f in message["files"] if is_video_file(f)] image_files = [f for f in message["files"] if is_image_file(f)] csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] content_list = [{"type": "text", "text": message["text"]}] for csv_path in csv_files: csv_analysis = analyze_csv_file(csv_path) content_list.append({"type": "text", "text": csv_analysis}) for txt_path in txt_files: txt_analysis = analyze_txt_file(txt_path) content_list.append({"type": "text", "text": txt_analysis}) for pdf_path in pdf_files: pdf_markdown = pdf_to_markdown(pdf_path) content_list.append({"type": "text", "text": pdf_markdown}) if video_files: content_list += process_video(video_files[0]) return content_list if "" in message["text"] and image_files: interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) if content_list[0]["type"] == "text": content_list = content_list[1:] return interleaved_content + content_list else: for img_path in image_files: content_list.append({"type": "image", "url": img_path}) return content_list ################################################## # history -> LLM 메시지 변환 ################################################## def process_history(history: list[dict]) -> list[dict]: messages = [] current_user_content: list[dict] = [] for item in history: if item["role"] == "assistant": if current_user_content: messages.append({"role": "user", "content": current_user_content}) current_user_content = [] messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) else: content = item["content"] if isinstance(content, str): current_user_content.append({"type": "text", "text": content}) elif isinstance(content, list) and len(content) > 0: file_path = content[0] if is_image_file(file_path): current_user_content.append({"type": "image", "url": file_path}) else: current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"}) if current_user_content: messages.append({"role": "user", "content": current_user_content}) return messages ################################################## # 메인 추론 함수 ################################################## @spaces.GPU(duration=120) def run( message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512, use_web_search: bool = False, web_search_query: str = "", ) -> Iterator[str]: if not validate_media_constraints(message, history): yield "" return try: # [새로 추가] web search 체크된 경우, 사용자가 입력한 "web_search_query" 대신 # 사용자의 메시지에서 키워드를 추출하여 검색 if use_web_search: user_text = message["text"] # 키워드 추출 ws_query = extract_keywords(user_text, top_k=5) logger.info(f"[Auto WebSearch Keyword] {ws_query!r}") # 상위 20개 결과 가져오기 ws_result = do_web_search(ws_query) # 검색된 20개 제목을 system 메시지에 추가 system_search_content = f"[Search top-20 Titles Based on user prompt]\n{ws_result}\n" # system 메시지로 추가 # (LLM이 이 정보를 참고하도록) if system_search_content.strip(): history_system_msg = { "role": "system", "content": [{"type": "text", "text": system_search_content}] } else: history_system_msg = { "role": "system", "content": [{"type": "text", "text": "No web search results"}] } else: history_system_msg = None messages = [] if system_prompt: messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) # 만약 web search가 있었다면, 그 결과를 추가 system 메시지로 삽입 if history_system_msg: messages.append(history_system_msg) messages.extend(process_history(history)) user_content = process_new_user_message(message) for item in user_content: if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..." messages.append({"role": "user", "content": user_content}) inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to(device=model.device, dtype=torch.bfloat16) streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) gen_kwargs = dict( inputs, streamer=streamer, max_new_tokens=max_new_tokens, ) t = Thread(target=model.generate, kwargs=gen_kwargs) t.start() output = "" for new_text in streamer: output += new_text yield output except Exception as e: logger.error(f"Error in run: {str(e)}") yield f"죄송합니다. 오류가 발생했습니다: {str(e)}" examples = [ [ { "text": "두 PDF 파일 내용을 비교하라.", "files": ["assets/additional-examples/pdf.pdf"], "files": [ "assets/additional-examples/before.pdf", "assets/additional-examples/after.pdf", ], } ], [ { "text": "CSV 파일 내용을 요약, 분석하라", "files": ["assets/additional-examples/sample-csv.csv"], } ], [ { "text": "이 영상의 내용을 설명하라", "files": ["assets/additional-examples/tmp.mp4"], } ], [ { "text": "표지 내용을 설명하고 글자를 읽어주세요.", "files": ["assets/additional-examples/maz.jpg"], } ], [ { "text": "이미 이 영양제를 가지고 있고, 이 제품 을 새로 사려 합니다. 함께 섭취할 때 주의해야 할 점이 있을까요?", "files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"], } ], [ { "text": "이 적분을 풀어주세요.", "files": ["assets/additional-examples/4.png"], } ], [ { "text": "이 티켓은 언제 발급된 것이고, 가격은 얼마인가요?", "files": ["assets/additional-examples/2.png"], } ], [ { "text": "이미지들의 순서를 바탕으로 짧은 이야기를 만들어 주세요.", "files": [ "assets/sample-images/09-1.png", "assets/sample-images/09-2.png", "assets/sample-images/09-3.png", "assets/sample-images/09-4.png", "assets/sample-images/09-5.png", ], } ], [ { "text": "이미지의 시각적 요소에서 영감을 받아 시를 작성해주세요.", "files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"], } ], [ { "text": "동일한 막대 그래프를 그리는 matplotlib 코드를 작성해주세요.", "files": ["assets/additional-examples/barchart.png"], } ], [ { "text": "이 세계에서 살고 있을 생물들을 상상해서 묘사해주세요.", "files": ["assets/sample-images/08.png"], } ], [ { "text": "이미지에 있는 텍스트를 그대로 읽어서 마크다운 형태로 적어주세요.", "files": ["assets/additional-examples/3.png"], } ], [ { "text": "이 표지판에는 무슨 문구가 적혀 있나요?", "files": ["assets/sample-images/02.png"], } ], [ { "text": "두 이미지를 비교해서 공통점과 차이점을 말해주세요.", "files": ["assets/sample-images/03.png"], } ], ] css = """ body { background: linear-gradient(135deg, #667eea, #764ba2); font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; color: #333; margin: 0; padding: 0; } .gradio-container { background: rgba(255, 255, 255, 0.95); border-radius: 15px; padding: 30px 40px; box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3); margin: 40px auto; max-width: 1200px; } .gradio-container h1 { color: #333; text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2); } .fillable { width: 95% !important; max-width: unset !important; } #examples_container { margin: auto; width: 90%; } #examples_row { justify-content: center; } .sidebar { background: rgba(255, 255, 255, 0.98); border-radius: 10px; padding: 20px; box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2); } button, .btn { background: linear-gradient(90deg, #ff8a00, #e52e71); border: none; color: #fff; padding: 12px 24px; text-transform: uppercase; font-weight: bold; letter-spacing: 1px; border-radius: 5px; cursor: pointer; transition: transform 0.2s ease-in-out; } button:hover, .btn:hover { transform: scale(1.05); } """ title_html = """

🤗 Vidraft-Gemma-3-27B

Multimodal Chat Interface + Optional Web Search

""" with gr.Blocks(css=css, title="Vidraft-Gemma-3-27B") as demo: gr.Markdown(title_html) with gr.Row(): # Left Sidebar with gr.Column(scale=3, variant="panel"): gr.Markdown("### Menu / Options") with gr.Row(): web_search_checkbox = gr.Checkbox( label="Web Search", value=False, info="Check to enable a SERPHouse web search before the chat reply" ) # [중요] web_search_text는 사실상 사용 안 함 (자동추출로 검색) web_search_text = gr.Textbox( lines=1, label="(Unused) Web Search Query", placeholder="No direct input needed" ) gr.Markdown("---") gr.Markdown("#### System Prompt") system_prompt_box = gr.Textbox( lines=3, value=( "You are a deeply thoughtful AI. Consider problems thoroughly and derive " "correct solutions through systematic reasoning. Please answer in korean." ), ) max_tokens_slider = gr.Slider( label="Max New Tokens", minimum=100, maximum=8000, step=50, value=2000, ) gr.Markdown("

") with gr.Column(scale=7): chat = gr.ChatInterface( fn=run, type="messages", chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), textbox=gr.MultimodalTextbox( file_types=[ ".webp", ".png", ".jpg", ".jpeg", ".gif", ".mp4", ".csv", ".txt", ".pdf" ], file_count="multiple", autofocus=True ), multimodal=True, additional_inputs=[ system_prompt_box, max_tokens_slider, web_search_checkbox, web_search_text, # 실제로는 사용 안함 ], stop_btn=False, title="Vidraft-Gemma-3-27B", examples=examples, run_examples_on_click=False, cache_examples=False, css_paths=None, delete_cache=(1800, 1800), ) with gr.Row(elem_id="examples_row"): with gr.Column(scale=12, elem_id="examples_container"): gr.Markdown("### Example Inputs (click to load)") gr.Examples( examples=examples, inputs=[], # Gradio가 dataset에 연결할 inputs가 없으므로 빈 리스트 cache_examples=False ) if __name__ == "__main__": demo.launch()