add res , remove files
Browse files- app.py +1 -1
- content/index.md +0 -53
- notes.py +0 -92
app.py
CHANGED
|
@@ -147,7 +147,7 @@ def cleanup_old_files():
|
|
| 147 |
if current_time - file_path.stat().st_mtime > 3600: # 1 hour
|
| 148 |
file_path.unlink()
|
| 149 |
|
| 150 |
-
with gr.Blocks() as demo:
|
| 151 |
with gr.Row():
|
| 152 |
gr.Markdown(title)
|
| 153 |
|
|
|
|
| 147 |
if current_time - file_path.stat().st_mtime > 3600: # 1 hour
|
| 148 |
file_path.unlink()
|
| 149 |
|
| 150 |
+
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
| 151 |
with gr.Row():
|
| 152 |
gr.Markdown(title)
|
| 153 |
|
content/index.md
DELETED
|
@@ -1,53 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: "🙋🏻♂️Welcome to Tonic's🫴🏻📸GOT-OCR"
|
| 3 |
-
---
|
| 4 |
-
|
| 5 |
-
# GOT-OCR Model Overview
|
| 6 |
-
|
| 7 |
-
The **GOT-OCR model** is a cutting-edge OCR system with **580M parameters**, designed to process a wide range of "characters." Equipped with a **high-compression encoder** and a **long-context decoder**, it excels in both scene and document-style images. The model supports **multi-page** and **dynamic resolution OCR**, enhancing its versatility.
|
| 8 |
-
|
| 9 |
-
### Output Formats
|
| 10 |
-
|
| 11 |
-
The model can generate results in several formats:
|
| 12 |
-
|
| 13 |
-
- **Plain Text**
|
| 14 |
-
- **Markdown**
|
| 15 |
-
- **TikZ diagrams**
|
| 16 |
-
- **Molecular SMILES strings**
|
| 17 |
-
|
| 18 |
-
Additionally, **interactive OCR** enables users to define regions of interest via **coordinates** or **colors**.
|
| 19 |
-
|
| 20 |
-
## Key Features
|
| 21 |
-
|
| 22 |
-
- **Plain Text OCR**: Extracts text from images.
|
| 23 |
-
- **Formatted Text OCR**: Retains the original formatting, including tables and formulas.
|
| 24 |
-
- **Fine-grained OCR**: Offers box-based and color-based OCR for precision in specific regions.
|
| 25 |
-
- **Multi-crop OCR**: Handles multiple cropped sections within an image.
|
| 26 |
-
- **Rendered Formatted OCR**: Outputs in markdown, TikZ, SMILES, and more, with rendered formatting.
|
| 27 |
-
|
| 28 |
-
## Supported Content Types
|
| 29 |
-
|
| 30 |
-
- Plain text
|
| 31 |
-
- Math/molecular formulas
|
| 32 |
-
- Tables and charts
|
| 33 |
-
- Sheet music
|
| 34 |
-
- Geometric shapes
|
| 35 |
-
|
| 36 |
-
## How to Use
|
| 37 |
-
|
| 38 |
-
1. Select a task from the dropdown menu.
|
| 39 |
-
2. Upload an image.
|
| 40 |
-
3. (Optional) Adjust parameters based on the selected task.
|
| 41 |
-
4. Click **Process** to view the results.
|
| 42 |
-
|
| 43 |
-
### Model Information
|
| 44 |
-
|
| 45 |
-
- **Model Name**: GOT-OCR 2.0
|
| 46 |
-
- **Hugging Face Repository**: [ucaslcl/GOT-OCR2_0](https://huggingface.co/ucaslcl/GOT-OCR2_0)
|
| 47 |
-
- **Environment**: CUDA 11.8 + PyTorch 2.0.1
|
| 48 |
-
|
| 49 |
-
---
|
| 50 |
-
|
| 51 |
-
### Join us :
|
| 52 |
-
|
| 53 |
-
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notes.py
DELETED
|
@@ -1,92 +0,0 @@
|
|
| 1 |
-
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
|
| 2 |
-
res, html_content = process_image(image, task, ocr_type, ocr_box, ocr_color)
|
| 3 |
-
|
| 4 |
-
res = f"$$ {res} $$"
|
| 5 |
-
# res = res.replace("$$ \\begin{tabular}", "\\begin{tabular}")
|
| 6 |
-
# res = res.replace("\\end{tabular} $$", "\\end{tabular}")
|
| 7 |
-
# res = res.replace("\\(", "")
|
| 8 |
-
# res = res.replace("\\)", "")
|
| 9 |
-
|
| 10 |
-
if html_content:
|
| 11 |
-
html_string = f'<iframe srcdoc="{html_content}" width="100%" height="600px"></iframe>'
|
| 12 |
-
return res, html_string
|
| 13 |
-
return res, None
|
| 14 |
-
|
| 15 |
-
@spaces.GPU
|
| 16 |
-
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None):
|
| 17 |
-
demo_html = os.path.join(results_folder, "demo.html")
|
| 18 |
-
html_file = os.path.join(results_folder, f"{task.replace(' ', '_').lower()}.html")
|
| 19 |
-
tikz_file = os.path.join(results_folder, "tikz.html")
|
| 20 |
-
|
| 21 |
-
unique_id = str(uuid.uuid4())
|
| 22 |
-
|
| 23 |
-
with tempfile.NamedTemporaryFile(mode='w+', suffix='.html', delete=False, dir=results_folder) as temp_file:
|
| 24 |
-
temp_html_path = temp_file.name
|
| 25 |
-
|
| 26 |
-
if task == "Plain Text OCR":
|
| 27 |
-
res = model.chat(tokenizer, image, ocr_type='ocr')
|
| 28 |
-
return res, None, unique_id
|
| 29 |
-
else:
|
| 30 |
-
if task == "Format Text OCR":
|
| 31 |
-
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file=temp_html_path)
|
| 32 |
-
elif task == "Fine-grained OCR (Box)":
|
| 33 |
-
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=temp_html_path)
|
| 34 |
-
elif task == "Fine-grained OCR (Color)":
|
| 35 |
-
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=temp_html_path)
|
| 36 |
-
elif task == "Multi-crop OCR":
|
| 37 |
-
res = model.chat_crop(tokenizer, image, ocr_type='format', render=True, save_render_file=temp_html_path)
|
| 38 |
-
elif task == "Render Formatted OCR":
|
| 39 |
-
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file=temp_html_path)
|
| 40 |
-
|
| 41 |
-
# html_content = None
|
| 42 |
-
if os.path.exists(temp_html_path):
|
| 43 |
-
with open(temp_html_path, 'r') as f:
|
| 44 |
-
html_content = f.read()
|
| 45 |
-
if os.path.exists(demo_html):
|
| 46 |
-
with open(demo_html, 'r') as f:
|
| 47 |
-
html_content = f.read()
|
| 48 |
-
elif os.path.exists(html_file):
|
| 49 |
-
with open(html_file, 'r') as f:
|
| 50 |
-
html_content = f.read()
|
| 51 |
-
elif os.path.exists(tikz_file):
|
| 52 |
-
with open(tikz_file, 'r') as f:
|
| 53 |
-
html_content = f.read()
|
| 54 |
-
else:
|
| 55 |
-
html_content = None
|
| 56 |
-
|
| 57 |
-
return res, html_content, unique_id
|
| 58 |
-
|
| 59 |
-
@spaces.GPU
|
| 60 |
-
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None):
|
| 61 |
-
demo_html = os.path.join(results_folder, "demo.html")
|
| 62 |
-
html_file = os.path.join(results_folder, f"{task.replace(' ', '_').lower()}.html")
|
| 63 |
-
tikz_file = os.path.join(results_folder, "tikz.html")
|
| 64 |
-
|
| 65 |
-
if task == "Plain Text OCR":
|
| 66 |
-
res = model.chat(tokenizer, image, ocr_type='ocr')
|
| 67 |
-
return res, None
|
| 68 |
-
else:
|
| 69 |
-
if task == "Format Text OCR":
|
| 70 |
-
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file=demo_html)
|
| 71 |
-
elif task == "Fine-grained OCR (Box)":
|
| 72 |
-
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=demo_html)
|
| 73 |
-
elif task == "Fine-grained OCR (Color)":
|
| 74 |
-
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=demo_html)
|
| 75 |
-
elif task == "Multi-crop OCR":
|
| 76 |
-
res = model.chat_crop(tokenizer, image, ocr_type='format', render=True, save_render_file=demo_html)
|
| 77 |
-
elif task == "Render Formatted OCR":
|
| 78 |
-
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file=demo_html)
|
| 79 |
-
|
| 80 |
-
if os.path.exists(demo_html):
|
| 81 |
-
with open(demo_html, 'r') as f:
|
| 82 |
-
html_content = f.read()
|
| 83 |
-
elif os.path.exists(html_file):
|
| 84 |
-
with open(html_file, 'r') as f:
|
| 85 |
-
html_content = f.read()
|
| 86 |
-
elif os.path.exists(tikz_file):
|
| 87 |
-
with open(tikz_file, 'r') as f:
|
| 88 |
-
html_content = f.read()
|
| 89 |
-
else:
|
| 90 |
-
html_content = None
|
| 91 |
-
|
| 92 |
-
return res, html_content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|