Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import random | |
| import time | |
| import os | |
| import re | |
| import spaces | |
| import torch | |
| import torch.nn as nn | |
| from loguru import logger | |
| from tqdm import tqdm | |
| import json | |
| import math | |
| from huggingface_hub import hf_hub_download | |
| # from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler | |
| from schedulers.scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler | |
| from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3 import retrieve_timesteps | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from transformers import UMT5EncoderModel, AutoTokenizer | |
| from language_segmentation import LangSegment | |
| from music_dcae.music_dcae_pipeline import MusicDCAE | |
| from models.ace_step_transformer import ACEStepTransformer2DModel | |
| from models.lyrics_utils.lyric_tokenizer import VoiceBpeTokenizer | |
| from apg_guidance import apg_forward, MomentumBuffer, cfg_forward, cfg_zero_star, cfg_double_condition_forward | |
| import torchaudio | |
| import torio | |
| torch.backends.cudnn.benchmark = False | |
| torch.set_float32_matmul_precision('high') | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| SUPPORT_LANGUAGES = { | |
| "en": 259, "de": 260, "fr": 262, "es": 284, "it": 285, | |
| "pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293, | |
| "nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753, | |
| "ko": 6152, "hi": 6680 | |
| } | |
| structure_pattern = re.compile(r"\[.*?\]") | |
| def ensure_directory_exists(directory): | |
| directory = str(directory) | |
| if not os.path.exists(directory): | |
| os.makedirs(directory) | |
| REPO_ID = "ACE-Step/ACE-Step-v1-3.5B" | |
| # class ACEStepPipeline(DiffusionPipeline): | |
| class ACEStepPipeline: | |
| def __init__(self, checkpoint_dir=None, device_id=0, dtype="bfloat16", text_encoder_checkpoint_path=None, persistent_storage_path=None, torch_compile=False, **kwargs): | |
| if not checkpoint_dir: | |
| if persistent_storage_path is None: | |
| checkpoint_dir = os.path.join(os.path.dirname(__file__), "checkpoints") | |
| else: | |
| checkpoint_dir = os.path.join(persistent_storage_path, "checkpoints") | |
| ensure_directory_exists(checkpoint_dir) | |
| self.checkpoint_dir = checkpoint_dir | |
| device = torch.device(f"cuda:{device_id}") if torch.cuda.is_available() else torch.device("cpu") | |
| if device.type == "cpu" and torch.backends.mps.is_available(): | |
| device = torch.device("mps") | |
| self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32 | |
| if device.type == "mps": | |
| self.dtype = torch.float32 | |
| self.device = device | |
| self.loaded = False | |
| self.torch_compile = torch_compile | |
| def load_checkpoint(self, checkpoint_dir=None): | |
| device = self.device | |
| dcae_model_path = os.path.join(checkpoint_dir, "music_dcae_f8c8") | |
| vocoder_model_path = os.path.join(checkpoint_dir, "music_vocoder") | |
| ace_step_model_path = os.path.join(checkpoint_dir, "ace_step_transformer") | |
| text_encoder_model_path = os.path.join(checkpoint_dir, "umt5-base") | |
| files_exist = ( | |
| os.path.exists(os.path.join(dcae_model_path, "config.json")) and | |
| os.path.exists(os.path.join(dcae_model_path, "diffusion_pytorch_model.safetensors")) and | |
| os.path.exists(os.path.join(vocoder_model_path, "config.json")) and | |
| os.path.exists(os.path.join(vocoder_model_path, "diffusion_pytorch_model.safetensors")) and | |
| os.path.exists(os.path.join(ace_step_model_path, "config.json")) and | |
| os.path.exists(os.path.join(ace_step_model_path, "diffusion_pytorch_model.safetensors")) and | |
| os.path.exists(os.path.join(text_encoder_model_path, "config.json")) and | |
| os.path.exists(os.path.join(text_encoder_model_path, "model.safetensors")) and | |
| os.path.exists(os.path.join(text_encoder_model_path, "special_tokens_map.json")) and | |
| os.path.exists(os.path.join(text_encoder_model_path, "tokenizer_config.json")) and | |
| os.path.exists(os.path.join(text_encoder_model_path, "tokenizer.json")) | |
| ) | |
| if not files_exist: | |
| logger.info(f"Checkpoint directory {checkpoint_dir} is not complete, downloading from Hugging Face Hub") | |
| # download music dcae model | |
| os.makedirs(dcae_model_path, exist_ok=True) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8", | |
| filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8", | |
| filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| # download vocoder model | |
| os.makedirs(vocoder_model_path, exist_ok=True) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder", | |
| filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder", | |
| filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| # download ace_step transformer model | |
| os.makedirs(ace_step_model_path, exist_ok=True) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer", | |
| filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer", | |
| filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| # download text encoder model | |
| os.makedirs(text_encoder_model_path, exist_ok=True) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base", | |
| filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base", | |
| filename="model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base", | |
| filename="special_tokens_map.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base", | |
| filename="tokenizer_config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base", | |
| filename="tokenizer.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
| logger.info("Models downloaded") | |
| dcae_checkpoint_path = dcae_model_path | |
| vocoder_checkpoint_path = vocoder_model_path | |
| ace_step_checkpoint_path = ace_step_model_path | |
| text_encoder_checkpoint_path = text_encoder_model_path | |
| self.music_dcae = MusicDCAE(dcae_checkpoint_path=dcae_checkpoint_path, vocoder_checkpoint_path=vocoder_checkpoint_path) | |
| self.music_dcae.to(device).eval().to(self.dtype) | |
| self.ace_step_transformer = ACEStepTransformer2DModel.from_pretrained(ace_step_checkpoint_path, torch_dtype=self.dtype) | |
| self.ace_step_transformer.to(device).eval().to(self.dtype) | |
| lang_segment = LangSegment() | |
| lang_segment.setfilters([ | |
| 'af', 'am', 'an', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'dz', 'el', | |
| 'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fo', 'fr', 'ga', 'gl', 'gu', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', | |
| 'id', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lb', 'lo', 'lt', 'lv', 'mg', | |
| 'mk', 'ml', 'mn', 'mr', 'ms', 'mt', 'nb', 'ne', 'nl', 'nn', 'no', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', | |
| 'ro', 'ru', 'rw', 'se', 'si', 'sk', 'sl', 'sq', 'sr', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tr', 'ug', 'uk', | |
| 'ur', 'vi', 'vo', 'wa', 'xh', 'zh', 'zu' | |
| ]) | |
| self.lang_segment = lang_segment | |
| self.lyric_tokenizer = VoiceBpeTokenizer() | |
| text_encoder_model = UMT5EncoderModel.from_pretrained(text_encoder_checkpoint_path, torch_dtype=self.dtype).eval() | |
| text_encoder_model = text_encoder_model.to(device).to(self.dtype) | |
| text_encoder_model.requires_grad_(False) | |
| self.text_encoder_model = text_encoder_model | |
| self.text_tokenizer = AutoTokenizer.from_pretrained(text_encoder_checkpoint_path) | |
| self.loaded = True | |
| # compile | |
| if self.torch_compile: | |
| self.music_dcae = torch.compile(self.music_dcae) | |
| self.ace_step_transformer = torch.compile(self.ace_step_transformer) | |
| self.text_encoder_model = torch.compile(self.text_encoder_model) | |
| def get_text_embeddings(self, texts, device, text_max_length=256): | |
| inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length) | |
| inputs = {key: value.to(device) for key, value in inputs.items()} | |
| if self.text_encoder_model.device != device: | |
| self.text_encoder_model.to(device) | |
| with torch.no_grad(): | |
| outputs = self.text_encoder_model(**inputs) | |
| last_hidden_states = outputs.last_hidden_state | |
| attention_mask = inputs["attention_mask"] | |
| return last_hidden_states, attention_mask | |
| def get_text_embeddings_null(self, texts, device, text_max_length=256, tau=0.01, l_min=8, l_max=10): | |
| inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length) | |
| inputs = {key: value.to(device) for key, value in inputs.items()} | |
| if self.text_encoder_model.device != device: | |
| self.text_encoder_model.to(device) | |
| def forward_with_temperature(inputs, tau=0.01, l_min=8, l_max=10): | |
| handlers = [] | |
| def hook(module, input, output): | |
| output[:] *= tau | |
| return output | |
| for i in range(l_min, l_max): | |
| handler = self.text_encoder_model.encoder.block[i].layer[0].SelfAttention.q.register_forward_hook(hook) | |
| handlers.append(handler) | |
| with torch.no_grad(): | |
| outputs = self.text_encoder_model(**inputs) | |
| last_hidden_states = outputs.last_hidden_state | |
| for hook in handlers: | |
| hook.remove() | |
| return last_hidden_states | |
| last_hidden_states = forward_with_temperature(inputs, tau, l_min, l_max) | |
| return last_hidden_states | |
| def set_seeds(self, batch_size, manual_seeds=None): | |
| seeds = None | |
| if manual_seeds is not None: | |
| if isinstance(manual_seeds, str): | |
| if "," in manual_seeds: | |
| seeds = list(map(int, manual_seeds.split(","))) | |
| elif manual_seeds.isdigit(): | |
| seeds = int(manual_seeds) | |
| random_generators = [torch.Generator(device=self.device) for _ in range(batch_size)] | |
| actual_seeds = [] | |
| for i in range(batch_size): | |
| seed = None | |
| if seeds is None: | |
| seed = torch.randint(0, 2**32, (1,)).item() | |
| if isinstance(seeds, int): | |
| seed = seeds | |
| if isinstance(seeds, list): | |
| seed = seeds[i] | |
| random_generators[i].manual_seed(seed) | |
| actual_seeds.append(seed) | |
| return random_generators, actual_seeds | |
| def get_lang(self, text): | |
| language = "en" | |
| try: | |
| _ = self.lang_segment.getTexts(text) | |
| langCounts = self.lang_segment.getCounts() | |
| language = langCounts[0][0] | |
| if len(langCounts) > 1 and language == "en": | |
| language = langCounts[1][0] | |
| except Exception as err: | |
| language = "en" | |
| return language | |
| def tokenize_lyrics(self, lyrics, debug=False): | |
| lines = lyrics.split("\n") | |
| lyric_token_idx = [261] | |
| for line in lines: | |
| line = line.strip() | |
| if not line: | |
| lyric_token_idx += [2] | |
| continue | |
| lang = self.get_lang(line) | |
| if lang not in SUPPORT_LANGUAGES: | |
| lang = "en" | |
| if "zh" in lang: | |
| lang = "zh" | |
| if "spa" in lang: | |
| lang = "es" | |
| try: | |
| if structure_pattern.match(line): | |
| token_idx = self.lyric_tokenizer.encode(line, "en") | |
| else: | |
| token_idx = self.lyric_tokenizer.encode(line, lang) | |
| if debug: | |
| toks = self.lyric_tokenizer.batch_decode([[tok_id] for tok_id in token_idx]) | |
| logger.info(f"debbug {line} --> {lang} --> {toks}") | |
| lyric_token_idx = lyric_token_idx + token_idx + [2] | |
| except Exception as e: | |
| print("tokenize error", e, "for line", line, "major_language", lang) | |
| return lyric_token_idx | |
| def calc_v( | |
| self, | |
| zt_src, | |
| zt_tar, | |
| t, | |
| encoder_text_hidden_states, | |
| text_attention_mask, | |
| target_encoder_text_hidden_states, | |
| target_text_attention_mask, | |
| speaker_embds, | |
| target_speaker_embeds, | |
| lyric_token_ids, | |
| lyric_mask, | |
| target_lyric_token_ids, | |
| target_lyric_mask, | |
| do_classifier_free_guidance=False, | |
| guidance_scale=1.0, | |
| target_guidance_scale=1.0, | |
| cfg_type="apg", | |
| attention_mask=None, | |
| momentum_buffer=None, | |
| momentum_buffer_tar=None, | |
| return_src_pred=True | |
| ): | |
| noise_pred_src = None | |
| if return_src_pred: | |
| src_latent_model_input = torch.cat([zt_src, zt_src]) if do_classifier_free_guidance else zt_src | |
| timestep = t.expand(src_latent_model_input.shape[0]) | |
| # source | |
| noise_pred_src = self.ace_step_transformer( | |
| hidden_states=src_latent_model_input, | |
| attention_mask=attention_mask, | |
| encoder_text_hidden_states=encoder_text_hidden_states, | |
| text_attention_mask=text_attention_mask, | |
| speaker_embeds=speaker_embds, | |
| lyric_token_idx=lyric_token_ids, | |
| lyric_mask=lyric_mask, | |
| timestep=timestep, | |
| ).sample | |
| if do_classifier_free_guidance: | |
| noise_pred_with_cond_src, noise_pred_uncond_src = noise_pred_src.chunk(2) | |
| if cfg_type == "apg": | |
| noise_pred_src = apg_forward( | |
| pred_cond=noise_pred_with_cond_src, | |
| pred_uncond=noise_pred_uncond_src, | |
| guidance_scale=guidance_scale, | |
| momentum_buffer=momentum_buffer, | |
| ) | |
| elif cfg_type == "cfg": | |
| noise_pred_src = cfg_forward( | |
| cond_output=noise_pred_with_cond_src, | |
| uncond_output=noise_pred_uncond_src, | |
| cfg_strength=guidance_scale, | |
| ) | |
| tar_latent_model_input = torch.cat([zt_tar, zt_tar]) if do_classifier_free_guidance else zt_tar | |
| timestep = t.expand(tar_latent_model_input.shape[0]) | |
| # target | |
| noise_pred_tar = self.ace_step_transformer( | |
| hidden_states=tar_latent_model_input, | |
| attention_mask=attention_mask, | |
| encoder_text_hidden_states=target_encoder_text_hidden_states, | |
| text_attention_mask=target_text_attention_mask, | |
| speaker_embeds=target_speaker_embeds, | |
| lyric_token_idx=target_lyric_token_ids, | |
| lyric_mask=target_lyric_mask, | |
| timestep=timestep, | |
| ).sample | |
| if do_classifier_free_guidance: | |
| noise_pred_with_cond_tar, noise_pred_uncond_tar = noise_pred_tar.chunk(2) | |
| if cfg_type == "apg": | |
| noise_pred_tar = apg_forward( | |
| pred_cond=noise_pred_with_cond_tar, | |
| pred_uncond=noise_pred_uncond_tar, | |
| guidance_scale=target_guidance_scale, | |
| momentum_buffer=momentum_buffer_tar, | |
| ) | |
| elif cfg_type == "cfg": | |
| noise_pred_tar = cfg_forward( | |
| cond_output=noise_pred_with_cond_tar, | |
| uncond_output=noise_pred_uncond_tar, | |
| cfg_strength=target_guidance_scale, | |
| ) | |
| return noise_pred_src, noise_pred_tar | |
| def flowedit_diffusion_process( | |
| self, | |
| encoder_text_hidden_states, | |
| text_attention_mask, | |
| speaker_embds, | |
| lyric_token_ids, | |
| lyric_mask, | |
| target_encoder_text_hidden_states, | |
| target_text_attention_mask, | |
| target_speaker_embeds, | |
| target_lyric_token_ids, | |
| target_lyric_mask, | |
| src_latents, | |
| random_generators=None, | |
| infer_steps=60, | |
| guidance_scale=15.0, | |
| n_min=0, | |
| n_max=1.0, | |
| n_avg=1, | |
| ): | |
| do_classifier_free_guidance = True | |
| if guidance_scale == 0.0 or guidance_scale == 1.0: | |
| do_classifier_free_guidance = False | |
| target_guidance_scale = guidance_scale | |
| device = encoder_text_hidden_states.device | |
| dtype = encoder_text_hidden_states.dtype | |
| bsz = encoder_text_hidden_states.shape[0] | |
| scheduler = FlowMatchEulerDiscreteScheduler( | |
| num_train_timesteps=1000, | |
| shift=3.0, | |
| ) | |
| T_steps = infer_steps | |
| frame_length = src_latents.shape[-1] | |
| attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype) | |
| timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None) | |
| if do_classifier_free_guidance: | |
| attention_mask = torch.cat([attention_mask] * 2, dim=0) | |
| encoder_text_hidden_states = torch.cat([encoder_text_hidden_states, torch.zeros_like(encoder_text_hidden_states)], 0) | |
| text_attention_mask = torch.cat([text_attention_mask] * 2, dim=0) | |
| target_encoder_text_hidden_states = torch.cat([target_encoder_text_hidden_states, torch.zeros_like(target_encoder_text_hidden_states)], 0) | |
| target_text_attention_mask = torch.cat([target_text_attention_mask] * 2, dim=0) | |
| speaker_embds = torch.cat([speaker_embds, torch.zeros_like(speaker_embds)], 0) | |
| target_speaker_embeds = torch.cat([target_speaker_embeds, torch.zeros_like(target_speaker_embeds)], 0) | |
| lyric_token_ids = torch.cat([lyric_token_ids, torch.zeros_like(lyric_token_ids)], 0) | |
| lyric_mask = torch.cat([lyric_mask, torch.zeros_like(lyric_mask)], 0) | |
| target_lyric_token_ids = torch.cat([target_lyric_token_ids, torch.zeros_like(target_lyric_token_ids)], 0) | |
| target_lyric_mask = torch.cat([target_lyric_mask, torch.zeros_like(target_lyric_mask)], 0) | |
| momentum_buffer = MomentumBuffer() | |
| momentum_buffer_tar = MomentumBuffer() | |
| x_src = src_latents | |
| zt_edit = x_src.clone() | |
| xt_tar = None | |
| n_min = int(infer_steps * n_min) | |
| n_max = int(infer_steps * n_max) | |
| logger.info("flowedit start from {} to {}".format(n_min, n_max)) | |
| for i, t in tqdm(enumerate(timesteps), total=T_steps): | |
| if i < n_min: | |
| continue | |
| t_i = t/1000 | |
| if i+1 < len(timesteps): | |
| t_im1 = (timesteps[i+1])/1000 | |
| else: | |
| t_im1 = torch.zeros_like(t_i).to(t_i.device) | |
| if i < n_max: | |
| # Calculate the average of the V predictions | |
| V_delta_avg = torch.zeros_like(x_src) | |
| for k in range(n_avg): | |
| fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype) | |
| zt_src = (1 - t_i) * x_src + (t_i) * fwd_noise | |
| zt_tar = zt_edit + zt_src - x_src | |
| Vt_src, Vt_tar = self.calc_v( | |
| zt_src=zt_src, | |
| zt_tar=zt_tar, | |
| t=t, | |
| encoder_text_hidden_states=encoder_text_hidden_states, | |
| text_attention_mask=text_attention_mask, | |
| target_encoder_text_hidden_states=target_encoder_text_hidden_states, | |
| target_text_attention_mask=target_text_attention_mask, | |
| speaker_embds=speaker_embds, | |
| target_speaker_embeds=target_speaker_embeds, | |
| lyric_token_ids=lyric_token_ids, | |
| lyric_mask=lyric_mask, | |
| target_lyric_token_ids=target_lyric_token_ids, | |
| target_lyric_mask=target_lyric_mask, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| guidance_scale=guidance_scale, | |
| target_guidance_scale=target_guidance_scale, | |
| attention_mask=attention_mask, | |
| momentum_buffer=momentum_buffer | |
| ) | |
| V_delta_avg += (1 / n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src)) | |
| # propagate direct ODE | |
| zt_edit = zt_edit.to(torch.float32) | |
| zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg | |
| zt_edit = zt_edit.to(V_delta_avg.dtype) | |
| else: # i >= T_steps-n_min # regular sampling for last n_min steps | |
| if i == n_max: | |
| fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype) | |
| scheduler._init_step_index(t) | |
| sigma = scheduler.sigmas[scheduler.step_index] | |
| xt_src = sigma * fwd_noise + (1.0 - sigma) * x_src | |
| xt_tar = zt_edit + xt_src - x_src | |
| _, Vt_tar = self.calc_v( | |
| zt_src=None, | |
| zt_tar=xt_tar, | |
| t=t, | |
| encoder_text_hidden_states=encoder_text_hidden_states, | |
| text_attention_mask=text_attention_mask, | |
| target_encoder_text_hidden_states=target_encoder_text_hidden_states, | |
| target_text_attention_mask=target_text_attention_mask, | |
| speaker_embds=speaker_embds, | |
| target_speaker_embeds=target_speaker_embeds, | |
| lyric_token_ids=lyric_token_ids, | |
| lyric_mask=lyric_mask, | |
| target_lyric_token_ids=target_lyric_token_ids, | |
| target_lyric_mask=target_lyric_mask, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| guidance_scale=guidance_scale, | |
| target_guidance_scale=target_guidance_scale, | |
| attention_mask=attention_mask, | |
| momentum_buffer_tar=momentum_buffer_tar, | |
| return_src_pred=False, | |
| ) | |
| dtype = Vt_tar.dtype | |
| xt_tar = xt_tar.to(torch.float32) | |
| prev_sample = xt_tar + (t_im1 - t_i) * Vt_tar | |
| prev_sample = prev_sample.to(dtype) | |
| xt_tar = prev_sample | |
| target_latents = zt_edit if xt_tar is None else xt_tar | |
| return target_latents | |
| def text2music_diffusion_process( | |
| self, | |
| duration, | |
| encoder_text_hidden_states, | |
| text_attention_mask, | |
| speaker_embds, | |
| lyric_token_ids, | |
| lyric_mask, | |
| random_generators=None, | |
| infer_steps=60, | |
| guidance_scale=15.0, | |
| omega_scale=10.0, | |
| scheduler_type="euler", | |
| cfg_type="apg", | |
| zero_steps=1, | |
| use_zero_init=True, | |
| guidance_interval=0.5, | |
| guidance_interval_decay=1.0, | |
| min_guidance_scale=3.0, | |
| oss_steps=[], | |
| encoder_text_hidden_states_null=None, | |
| use_erg_lyric=False, | |
| use_erg_diffusion=False, | |
| retake_random_generators=None, | |
| retake_variance=0.5, | |
| add_retake_noise=False, | |
| guidance_scale_text=0.0, | |
| guidance_scale_lyric=0.0, | |
| repaint_start=0, | |
| repaint_end=0, | |
| src_latents=None, | |
| ): | |
| logger.info("cfg_type: {}, guidance_scale: {}, omega_scale: {}".format(cfg_type, guidance_scale, omega_scale)) | |
| do_classifier_free_guidance = True | |
| if guidance_scale == 0.0 or guidance_scale == 1.0: | |
| do_classifier_free_guidance = False | |
| do_double_condition_guidance = False | |
| if guidance_scale_text is not None and guidance_scale_text > 1.0 and guidance_scale_lyric is not None and guidance_scale_lyric > 1.0: | |
| do_double_condition_guidance = True | |
| logger.info("do_double_condition_guidance: {}, guidance_scale_text: {}, guidance_scale_lyric: {}".format(do_double_condition_guidance, guidance_scale_text, guidance_scale_lyric)) | |
| device = encoder_text_hidden_states.device | |
| dtype = encoder_text_hidden_states.dtype | |
| bsz = encoder_text_hidden_states.shape[0] | |
| if scheduler_type == "euler": | |
| scheduler = FlowMatchEulerDiscreteScheduler( | |
| num_train_timesteps=1000, | |
| shift=3.0, | |
| ) | |
| elif scheduler_type == "heun": | |
| scheduler = FlowMatchHeunDiscreteScheduler( | |
| num_train_timesteps=1000, | |
| shift=3.0, | |
| ) | |
| frame_length = int(duration * 44100 / 512 / 8) | |
| if src_latents is not None: | |
| frame_length = src_latents.shape[-1] | |
| if len(oss_steps) > 0: | |
| infer_steps = max(oss_steps) | |
| scheduler.set_timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None) | |
| new_timesteps = torch.zeros(len(oss_steps), dtype=dtype, device=device) | |
| for idx in range(len(oss_steps)): | |
| new_timesteps[idx] = timesteps[oss_steps[idx]-1] | |
| num_inference_steps = len(oss_steps) | |
| sigmas = (new_timesteps / 1000).float().cpu().numpy() | |
| timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=num_inference_steps, device=device, sigmas=sigmas) | |
| logger.info(f"oss_steps: {oss_steps}, num_inference_steps: {num_inference_steps} after remapping to timesteps {timesteps}") | |
| else: | |
| timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None) | |
| target_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=random_generators, device=device, dtype=dtype) | |
| is_repaint = False | |
| is_extend = False | |
| if add_retake_noise: | |
| n_min = int(infer_steps * (1 - retake_variance)) | |
| retake_variance = torch.tensor(retake_variance * math.pi/2).to(device).to(dtype) | |
| retake_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=retake_random_generators, device=device, dtype=dtype) | |
| repaint_start_frame = int(repaint_start * 44100 / 512 / 8) | |
| repaint_end_frame = int(repaint_end * 44100 / 512 / 8) | |
| x0 = src_latents | |
| # retake | |
| is_repaint = (repaint_end_frame - repaint_start_frame != frame_length) | |
| is_extend = (repaint_start_frame < 0) or (repaint_end_frame > frame_length) | |
| if is_extend: | |
| is_repaint = True | |
| # TODO: train a mask aware repainting controlnet | |
| # to make sure mean = 0, std = 1 | |
| if not is_repaint: | |
| target_latents = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents | |
| elif not is_extend: | |
| # if repaint_end_frame | |
| repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype) | |
| repaint_mask[:, :, :, repaint_start_frame:repaint_end_frame] = 1.0 | |
| repaint_noise = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents | |
| repaint_noise = torch.where(repaint_mask == 1.0, repaint_noise, target_latents) | |
| zt_edit = x0.clone() | |
| z0 = repaint_noise | |
| elif is_extend: | |
| to_right_pad_gt_latents = None | |
| to_left_pad_gt_latents = None | |
| gt_latents = src_latents | |
| src_latents_length = gt_latents.shape[-1] | |
| max_infer_fame_length = int(240 * 44100 / 512 / 8) | |
| left_pad_frame_length = 0 | |
| right_pad_frame_length = 0 | |
| right_trim_length = 0 | |
| left_trim_length = 0 | |
| if repaint_start_frame < 0: | |
| left_pad_frame_length = abs(repaint_start_frame) | |
| frame_length = left_pad_frame_length + gt_latents.shape[-1] | |
| extend_gt_latents = torch.nn.functional.pad(gt_latents, (left_pad_frame_length, 0), "constant", 0) | |
| if frame_length > max_infer_fame_length: | |
| right_trim_length = frame_length - max_infer_fame_length | |
| extend_gt_latents = extend_gt_latents[:,:,:,:max_infer_fame_length] | |
| to_right_pad_gt_latents = extend_gt_latents[:,:,:,-right_trim_length:] | |
| frame_length = max_infer_fame_length | |
| repaint_start_frame = 0 | |
| gt_latents = extend_gt_latents | |
| if repaint_end_frame > src_latents_length: | |
| right_pad_frame_length = repaint_end_frame - gt_latents.shape[-1] | |
| frame_length = gt_latents.shape[-1] + right_pad_frame_length | |
| extend_gt_latents = torch.nn.functional.pad(gt_latents, (0, right_pad_frame_length), "constant", 0) | |
| if frame_length > max_infer_fame_length: | |
| left_trim_length = frame_length - max_infer_fame_length | |
| extend_gt_latents = extend_gt_latents[:,:,:,-max_infer_fame_length:] | |
| to_left_pad_gt_latents = extend_gt_latents[:,:,:,:left_trim_length] | |
| frame_length = max_infer_fame_length | |
| repaint_end_frame = frame_length | |
| gt_latents = extend_gt_latents | |
| repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype) | |
| if left_pad_frame_length > 0: | |
| repaint_mask[:,:,:,:left_pad_frame_length] = 1.0 | |
| if right_pad_frame_length > 0: | |
| repaint_mask[:,:,:,-right_pad_frame_length:] = 1.0 | |
| x0 = gt_latents | |
| padd_list = [] | |
| if left_pad_frame_length > 0: | |
| padd_list.append(retake_latents[:, :, :, :left_pad_frame_length]) | |
| padd_list.append(target_latents[:,:,:,left_trim_length:target_latents.shape[-1]-right_trim_length]) | |
| if right_pad_frame_length > 0: | |
| padd_list.append(retake_latents[:, :, :, -right_pad_frame_length:]) | |
| target_latents = torch.cat(padd_list, dim=-1) | |
| assert target_latents.shape[-1] == x0.shape[-1], f"{target_latents.shape=} {x0.shape=}" | |
| zt_edit = x0.clone() | |
| z0 = target_latents | |
| attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype) | |
| # guidance interval | |
| start_idx = int(num_inference_steps * ((1 - guidance_interval) / 2)) | |
| end_idx = int(num_inference_steps * (guidance_interval / 2 + 0.5)) | |
| logger.info(f"start_idx: {start_idx}, end_idx: {end_idx}, num_inference_steps: {num_inference_steps}") | |
| momentum_buffer = MomentumBuffer() | |
| def forward_encoder_with_temperature(self, inputs, tau=0.01, l_min=4, l_max=6): | |
| handlers = [] | |
| def hook(module, input, output): | |
| output[:] *= tau | |
| return output | |
| for i in range(l_min, l_max): | |
| handler = self.ace_step_transformer.lyric_encoder.encoders[i].self_attn.linear_q.register_forward_hook(hook) | |
| handlers.append(handler) | |
| encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(**inputs) | |
| for hook in handlers: | |
| hook.remove() | |
| return encoder_hidden_states | |
| # P(speaker, text, lyric) | |
| encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode( | |
| encoder_text_hidden_states, | |
| text_attention_mask, | |
| speaker_embds, | |
| lyric_token_ids, | |
| lyric_mask, | |
| ) | |
| if use_erg_lyric: | |
| # P(null_speaker, text_weaker, lyric_weaker) | |
| encoder_hidden_states_null = forward_encoder_with_temperature( | |
| self, | |
| inputs={ | |
| "encoder_text_hidden_states": encoder_text_hidden_states_null if encoder_text_hidden_states_null is not None else torch.zeros_like(encoder_text_hidden_states), | |
| "text_attention_mask": text_attention_mask, | |
| "speaker_embeds": torch.zeros_like(speaker_embds), | |
| "lyric_token_idx": lyric_token_ids, | |
| "lyric_mask": lyric_mask, | |
| } | |
| ) | |
| else: | |
| # P(null_speaker, null_text, null_lyric) | |
| encoder_hidden_states_null, _ = self.ace_step_transformer.encode( | |
| torch.zeros_like(encoder_text_hidden_states), | |
| text_attention_mask, | |
| torch.zeros_like(speaker_embds), | |
| torch.zeros_like(lyric_token_ids), | |
| lyric_mask, | |
| ) | |
| encoder_hidden_states_no_lyric = None | |
| if do_double_condition_guidance: | |
| # P(null_speaker, text, lyric_weaker) | |
| if use_erg_lyric: | |
| encoder_hidden_states_no_lyric = forward_encoder_with_temperature( | |
| self, | |
| inputs={ | |
| "encoder_text_hidden_states": encoder_text_hidden_states, | |
| "text_attention_mask": text_attention_mask, | |
| "speaker_embeds": torch.zeros_like(speaker_embds), | |
| "lyric_token_idx": lyric_token_ids, | |
| "lyric_mask": lyric_mask, | |
| } | |
| ) | |
| # P(null_speaker, text, no_lyric) | |
| else: | |
| encoder_hidden_states_no_lyric, _ = self.ace_step_transformer.encode( | |
| encoder_text_hidden_states, | |
| text_attention_mask, | |
| torch.zeros_like(speaker_embds), | |
| torch.zeros_like(lyric_token_ids), | |
| lyric_mask, | |
| ) | |
| def forward_diffusion_with_temperature(self, hidden_states, timestep, inputs, tau=0.01, l_min=15, l_max=20): | |
| handlers = [] | |
| def hook(module, input, output): | |
| output[:] *= tau | |
| return output | |
| for i in range(l_min, l_max): | |
| handler = self.ace_step_transformer.transformer_blocks[i].attn.to_q.register_forward_hook(hook) | |
| handlers.append(handler) | |
| handler = self.ace_step_transformer.transformer_blocks[i].cross_attn.to_q.register_forward_hook(hook) | |
| handlers.append(handler) | |
| sample = self.ace_step_transformer.decode(hidden_states=hidden_states, timestep=timestep, **inputs).sample | |
| for hook in handlers: | |
| hook.remove() | |
| return sample | |
| for i, t in tqdm(enumerate(timesteps), total=num_inference_steps): | |
| if is_repaint: | |
| if i < n_min: | |
| continue | |
| elif i == n_min: | |
| t_i = t / 1000 | |
| zt_src = (1 - t_i) * x0 + (t_i) * z0 | |
| target_latents = zt_edit + zt_src - x0 | |
| logger.info(f"repaint start from {n_min} add {t_i} level of noise") | |
| # expand the latents if we are doing classifier free guidance | |
| latents = target_latents | |
| is_in_guidance_interval = start_idx <= i < end_idx | |
| if is_in_guidance_interval and do_classifier_free_guidance: | |
| # compute current guidance scale | |
| if guidance_interval_decay > 0: | |
| # Linearly interpolate to calculate the current guidance scale | |
| progress = (i - start_idx) / (end_idx - start_idx - 1) # 归一化到[0,1] | |
| current_guidance_scale = guidance_scale - (guidance_scale - min_guidance_scale) * progress * guidance_interval_decay | |
| else: | |
| current_guidance_scale = guidance_scale | |
| latent_model_input = latents | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| output_length = latent_model_input.shape[-1] | |
| # P(x|speaker, text, lyric) | |
| noise_pred_with_cond = self.ace_step_transformer.decode( | |
| hidden_states=latent_model_input, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_hidden_mask=encoder_hidden_mask, | |
| output_length=output_length, | |
| timestep=timestep, | |
| ).sample | |
| noise_pred_with_only_text_cond = None | |
| if do_double_condition_guidance and encoder_hidden_states_no_lyric is not None: | |
| noise_pred_with_only_text_cond = self.ace_step_transformer.decode( | |
| hidden_states=latent_model_input, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states_no_lyric, | |
| encoder_hidden_mask=encoder_hidden_mask, | |
| output_length=output_length, | |
| timestep=timestep, | |
| ).sample | |
| if use_erg_diffusion: | |
| noise_pred_uncond = forward_diffusion_with_temperature( | |
| self, | |
| hidden_states=latent_model_input, | |
| timestep=timestep, | |
| inputs={ | |
| "encoder_hidden_states": encoder_hidden_states_null, | |
| "encoder_hidden_mask": encoder_hidden_mask, | |
| "output_length": output_length, | |
| "attention_mask": attention_mask, | |
| }, | |
| ) | |
| else: | |
| noise_pred_uncond = self.ace_step_transformer.decode( | |
| hidden_states=latent_model_input, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states_null, | |
| encoder_hidden_mask=encoder_hidden_mask, | |
| output_length=output_length, | |
| timestep=timestep, | |
| ).sample | |
| if do_double_condition_guidance and noise_pred_with_only_text_cond is not None: | |
| noise_pred = cfg_double_condition_forward( | |
| cond_output=noise_pred_with_cond, | |
| uncond_output=noise_pred_uncond, | |
| only_text_cond_output=noise_pred_with_only_text_cond, | |
| guidance_scale_text=guidance_scale_text, | |
| guidance_scale_lyric=guidance_scale_lyric, | |
| ) | |
| elif cfg_type == "apg": | |
| noise_pred = apg_forward( | |
| pred_cond=noise_pred_with_cond, | |
| pred_uncond=noise_pred_uncond, | |
| guidance_scale=current_guidance_scale, | |
| momentum_buffer=momentum_buffer, | |
| ) | |
| elif cfg_type == "cfg": | |
| noise_pred = cfg_forward( | |
| cond_output=noise_pred_with_cond, | |
| uncond_output=noise_pred_uncond, | |
| cfg_strength=current_guidance_scale, | |
| ) | |
| elif cfg_type == "cfg_star": | |
| noise_pred = cfg_zero_star( | |
| noise_pred_with_cond=noise_pred_with_cond, | |
| noise_pred_uncond=noise_pred_uncond, | |
| guidance_scale=current_guidance_scale, | |
| i=i, | |
| zero_steps=zero_steps, | |
| use_zero_init=use_zero_init | |
| ) | |
| else: | |
| latent_model_input = latents | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| noise_pred = self.ace_step_transformer.decode( | |
| hidden_states=latent_model_input, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_hidden_mask=encoder_hidden_mask, | |
| output_length=latent_model_input.shape[-1], | |
| timestep=timestep, | |
| ).sample | |
| if is_repaint and i >= n_min: | |
| t_i = t/1000 | |
| if i+1 < len(timesteps): | |
| t_im1 = (timesteps[i+1])/1000 | |
| else: | |
| t_im1 = torch.zeros_like(t_i).to(t_i.device) | |
| dtype = noise_pred.dtype | |
| target_latents = target_latents.to(torch.float32) | |
| prev_sample = target_latents + (t_im1 - t_i) * noise_pred | |
| prev_sample = prev_sample.to(dtype) | |
| target_latents = prev_sample | |
| zt_src = (1 - t_im1) * x0 + (t_im1) * z0 | |
| target_latents = torch.where(repaint_mask == 1.0, target_latents, zt_src) | |
| else: | |
| target_latents = scheduler.step(model_output=noise_pred, timestep=t, sample=target_latents, return_dict=False, omega=omega_scale)[0] | |
| if is_extend: | |
| if to_right_pad_gt_latents is not None: | |
| target_latents = torch.cat([target_latents, to_right_pad_gt_latents], dim=-1) | |
| if to_left_pad_gt_latents is not None: | |
| target_latents = torch.cat([to_right_pad_gt_latents, target_latents], dim=0) | |
| return target_latents | |
| def latents2audio(self, latents, target_wav_duration_second=30, sample_rate=48000, save_path=None, format="mp3"): | |
| output_audio_paths = [] | |
| bs = latents.shape[0] | |
| audio_lengths = [target_wav_duration_second * sample_rate] * bs | |
| pred_latents = latents | |
| with torch.no_grad(): | |
| _, pred_wavs = self.music_dcae.decode(pred_latents, sr=sample_rate) | |
| pred_wavs = [pred_wav.cpu().float() for pred_wav in pred_wavs] | |
| for i in tqdm(range(bs)): | |
| output_audio_path = self.save_wav_file(pred_wavs[i], i, sample_rate=sample_rate) | |
| output_audio_paths.append(output_audio_path) | |
| return output_audio_paths | |
| def save_wav_file(self, target_wav, idx, save_path=None, sample_rate=48000, format="mp3"): | |
| if save_path is None: | |
| logger.warning("save_path is None, using default path ./outputs/") | |
| base_path = f"./outputs" | |
| ensure_directory_exists(base_path) | |
| else: | |
| base_path = save_path | |
| ensure_directory_exists(base_path) | |
| output_path_flac = f"{base_path}/output_{time.strftime('%Y%m%d%H%M%S')}_{idx}.{format}" | |
| target_wav = target_wav.float() | |
| torchaudio.save(output_path_flac, target_wav, sample_rate=sample_rate, format=format, compression=torio.io.CodecConfig(bit_rate=320000)) | |
| return output_path_flac | |
| def infer_latents(self, input_audio_path): | |
| if input_audio_path is None: | |
| return None | |
| input_audio, sr = self.music_dcae.load_audio(input_audio_path) | |
| input_audio = input_audio.unsqueeze(0) | |
| device, dtype = self.device, self.dtype | |
| input_audio = input_audio.to(device=device, dtype=dtype) | |
| latents, _ = self.music_dcae.encode(input_audio, sr=sr) | |
| return latents | |
| def __call__( | |
| self, | |
| audio_duration: float = 60.0, | |
| prompt: str = None, | |
| lyrics: str = None, | |
| infer_step: int = 60, | |
| guidance_scale: float = 15.0, | |
| scheduler_type: str = "euler", | |
| cfg_type: str = "apg", | |
| omega_scale: int = 10.0, | |
| manual_seeds: list = None, | |
| guidance_interval: float = 0.5, | |
| guidance_interval_decay: float = 0., | |
| min_guidance_scale: float = 3.0, | |
| use_erg_tag: bool = True, | |
| use_erg_lyric: bool = True, | |
| use_erg_diffusion: bool = True, | |
| oss_steps: str = None, | |
| guidance_scale_text: float = 0.0, | |
| guidance_scale_lyric: float = 0.0, | |
| retake_seeds: list = None, | |
| retake_variance: float = 0.5, | |
| task: str = "text2music", | |
| repaint_start: int = 0, | |
| repaint_end: int = 0, | |
| src_audio_path: str = None, | |
| edit_target_prompt: str = None, | |
| edit_target_lyrics: str = None, | |
| edit_n_min: float = 0.0, | |
| edit_n_max: float = 1.0, | |
| edit_n_avg: int = 1, | |
| save_path: str = None, | |
| format: str = "mp3", | |
| batch_size: int = 1, | |
| debug: bool = False, | |
| ): | |
| start_time = time.time() | |
| if not self.loaded: | |
| logger.warning("Checkpoint not loaded, loading checkpoint...") | |
| self.load_checkpoint(self.checkpoint_dir) | |
| load_model_cost = time.time() - start_time | |
| logger.info(f"Model loaded in {load_model_cost:.2f} seconds.") | |
| start_time = time.time() | |
| random_generators, actual_seeds = self.set_seeds(batch_size, manual_seeds) | |
| retake_random_generators, actual_retake_seeds = self.set_seeds(batch_size, retake_seeds) | |
| if isinstance(oss_steps, str) and len(oss_steps) > 0: | |
| oss_steps = list(map(int, oss_steps.split(","))) | |
| else: | |
| oss_steps = [] | |
| texts = [prompt] | |
| encoder_text_hidden_states, text_attention_mask = self.get_text_embeddings(texts, self.device) | |
| encoder_text_hidden_states = encoder_text_hidden_states.repeat(batch_size, 1, 1) | |
| text_attention_mask = text_attention_mask.repeat(batch_size, 1) | |
| encoder_text_hidden_states_null = None | |
| if use_erg_tag: | |
| encoder_text_hidden_states_null = self.get_text_embeddings_null(texts, self.device) | |
| encoder_text_hidden_states_null = encoder_text_hidden_states_null.repeat(batch_size, 1, 1) | |
| # not support for released checkpoint | |
| speaker_embeds = torch.zeros(batch_size, 512).to(self.device).to(self.dtype) | |
| # 6 lyric | |
| lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long() | |
| lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long() | |
| if len(lyrics) > 0: | |
| lyric_token_idx = self.tokenize_lyrics(lyrics, debug=debug) | |
| lyric_mask = [1] * len(lyric_token_idx) | |
| lyric_token_idx = torch.tensor(lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1) | |
| lyric_mask = torch.tensor(lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1) | |
| if audio_duration <= 0: | |
| audio_duration = random.uniform(30.0, 240.0) | |
| logger.info(f"random audio duration: {audio_duration}") | |
| end_time = time.time() | |
| preprocess_time_cost = end_time - start_time | |
| start_time = end_time | |
| add_retake_noise = task in ("retake", "repaint", "extend") | |
| # retake equal to repaint | |
| if task == "retake": | |
| repaint_start = 0 | |
| repaint_end = audio_duration | |
| src_latents = None | |
| if src_audio_path is not None: | |
| assert src_audio_path is not None and task in ("repaint", "edit", "extend"), "src_audio_path is required for retake/repaint/extend task" | |
| assert os.path.exists(src_audio_path), f"src_audio_path {src_audio_path} does not exist" | |
| src_latents = self.infer_latents(src_audio_path) | |
| if task == "edit": | |
| texts = [edit_target_prompt] | |
| target_encoder_text_hidden_states, target_text_attention_mask = self.get_text_embeddings(texts, self.device) | |
| target_encoder_text_hidden_states = target_encoder_text_hidden_states.repeat(batch_size, 1, 1) | |
| target_text_attention_mask = target_text_attention_mask.repeat(batch_size, 1) | |
| target_lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long() | |
| target_lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long() | |
| if len(edit_target_lyrics) > 0: | |
| target_lyric_token_idx = self.tokenize_lyrics(edit_target_lyrics, debug=True) | |
| target_lyric_mask = [1] * len(target_lyric_token_idx) | |
| target_lyric_token_idx = torch.tensor(target_lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1) | |
| target_lyric_mask = torch.tensor(target_lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1) | |
| target_speaker_embeds = speaker_embeds.clone() | |
| target_latents = self.flowedit_diffusion_process( | |
| encoder_text_hidden_states=encoder_text_hidden_states, | |
| text_attention_mask=text_attention_mask, | |
| speaker_embds=speaker_embeds, | |
| lyric_token_ids=lyric_token_idx, | |
| lyric_mask=lyric_mask, | |
| target_encoder_text_hidden_states=target_encoder_text_hidden_states, | |
| target_text_attention_mask=target_text_attention_mask, | |
| target_speaker_embeds=target_speaker_embeds, | |
| target_lyric_token_ids=target_lyric_token_idx, | |
| target_lyric_mask=target_lyric_mask, | |
| src_latents=src_latents, | |
| random_generators=retake_random_generators, # more diversity | |
| infer_steps=infer_step, | |
| guidance_scale=guidance_scale, | |
| n_min=edit_n_min, | |
| n_max=edit_n_max, | |
| n_avg=edit_n_avg, | |
| ) | |
| else: | |
| target_latents = self.text2music_diffusion_process( | |
| duration=audio_duration, | |
| encoder_text_hidden_states=encoder_text_hidden_states, | |
| text_attention_mask=text_attention_mask, | |
| speaker_embds=speaker_embeds, | |
| lyric_token_ids=lyric_token_idx, | |
| lyric_mask=lyric_mask, | |
| guidance_scale=guidance_scale, | |
| omega_scale=omega_scale, | |
| infer_steps=infer_step, | |
| random_generators=random_generators, | |
| scheduler_type=scheduler_type, | |
| cfg_type=cfg_type, | |
| guidance_interval=guidance_interval, | |
| guidance_interval_decay=guidance_interval_decay, | |
| min_guidance_scale=min_guidance_scale, | |
| oss_steps=oss_steps, | |
| encoder_text_hidden_states_null=encoder_text_hidden_states_null, | |
| use_erg_lyric=use_erg_lyric, | |
| use_erg_diffusion=use_erg_diffusion, | |
| retake_random_generators=retake_random_generators, | |
| retake_variance=retake_variance, | |
| add_retake_noise=add_retake_noise, | |
| guidance_scale_text=guidance_scale_text, | |
| guidance_scale_lyric=guidance_scale_lyric, | |
| repaint_start=repaint_start, | |
| repaint_end=repaint_end, | |
| src_latents=src_latents, | |
| ) | |
| end_time = time.time() | |
| diffusion_time_cost = end_time - start_time | |
| start_time = end_time | |
| output_paths = self.latents2audio( | |
| latents=target_latents, | |
| target_wav_duration_second=audio_duration, | |
| save_path=save_path, | |
| format=format, | |
| ) | |
| end_time = time.time() | |
| latent2audio_time_cost = end_time - start_time | |
| timecosts = { | |
| "preprocess": preprocess_time_cost, | |
| "diffusion": diffusion_time_cost, | |
| "latent2audio": latent2audio_time_cost, | |
| } | |
| input_params_json = { | |
| "task": task, | |
| "prompt": prompt if task != "edit" else edit_target_prompt, | |
| "lyrics": lyrics if task != "edit" else edit_target_lyrics, | |
| "audio_duration": audio_duration, | |
| "infer_step": infer_step, | |
| "guidance_scale": guidance_scale, | |
| "scheduler_type": scheduler_type, | |
| "cfg_type": cfg_type, | |
| "omega_scale": omega_scale, | |
| "guidance_interval": guidance_interval, | |
| "guidance_interval_decay": guidance_interval_decay, | |
| "min_guidance_scale": min_guidance_scale, | |
| "use_erg_tag": use_erg_tag, | |
| "use_erg_lyric": use_erg_lyric, | |
| "use_erg_diffusion": use_erg_diffusion, | |
| "oss_steps": oss_steps, | |
| "timecosts": timecosts, | |
| "actual_seeds": actual_seeds, | |
| "retake_seeds": actual_retake_seeds, | |
| "retake_variance": retake_variance, | |
| "guidance_scale_text": guidance_scale_text, | |
| "guidance_scale_lyric": guidance_scale_lyric, | |
| "repaint_start": repaint_start, | |
| "repaint_end": repaint_end, | |
| "edit_n_min": edit_n_min, | |
| "edit_n_max": edit_n_max, | |
| "edit_n_avg": edit_n_avg, | |
| "src_audio_path": src_audio_path, | |
| "edit_target_prompt": edit_target_prompt, | |
| "edit_target_lyrics": edit_target_lyrics, | |
| } | |
| # save input_params_json | |
| for output_audio_path in output_paths: | |
| input_params_json_save_path = output_audio_path.replace(f".{format}", "_input_params.json") | |
| input_params_json["audio_path"] = output_audio_path | |
| with open(input_params_json_save_path, "w", encoding="utf-8") as f: | |
| json.dump(input_params_json, f, indent=4, ensure_ascii=False) | |
| return output_paths + [input_params_json] | |
 
			

