VIATEUR-AI commited on
Commit
cb9a92c
·
verified ·
1 Parent(s): 0242e47

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -58
app.py CHANGED
@@ -1,64 +1,53 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Create a translation pipeline
5
+ model_name = "facebook/nllb-200-1.3B"
6
+ translator = pipeline("translation", model=model_name)
7
+
8
+ # Define available languages including Kinyarwanda
9
+ languages = {
10
+ "English": "eng_Latn",
11
+ "French": "fra_Latn",
12
+ "Spanish": "spa_Latn",
13
+ "German": "deu_Latn",
14
+ "Chinese": "zho_Hans",
15
+ "Arabic": "ara_Arab",
16
+ "Russian": "rus_Cyrl",
17
+ "Hindi": "hin_Deva",
18
+ "Japanese": "jpn_Jpan",
19
+ "Kinyarwanda": "kin_Latn"
20
+ }
21
+
22
+ def translate(text, source_lang, target_lang):
23
+ if not text:
24
+ return ""
25
+
26
+ source_code = languages.get(source_lang)
27
+ target_code = languages.get(target_lang)
28
+
29
+ # NLLB requires specific format for translation
30
+ translation = translator(
31
+ text,
32
+ src_lang=source_code,
33
+ tgt_lang=target_code,
34
+ max_length=400
35
+ )
36
+
37
+ return translation[0]["translation_text"]
38
+
39
+ # Create the Gradio interface
40
+ demo = gr.Interface(
41
+ fn=translate,
42
+ inputs=[
43
+ gr.Textbox(label="Input Text", lines=5),
44
+ gr.Dropdown(list(languages.keys()), label="Source Language", value="English"),
45
+ gr.Dropdown(list(languages.keys()), label="Target Language", value="French")
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  ],
47
+ outputs=gr.Textbox(label="Translated Text", lines=5),
48
+ title="NLLB-200 Multilingual Translation",
49
+ description="Translate text between multiple languages using Facebook's NLLB-200 model."
50
  )
51
 
 
52
  if __name__ == "__main__":
53
  demo.launch()