Spaces:
Runtime error
Runtime error
| from collections.abc import Sequence | |
| from abc import ABC, abstractmethod | |
| import torch | |
| from PIL.Image import Image | |
| class FeatureExtractor(ABC): | |
| def encode_image(self, img_list: Sequence[Image]) -> torch.Tensor: | |
| """ | |
| Encode the input images and return the corresponding embeddings. | |
| Args: | |
| img_list: A list of PIL.Image.Image objects. | |
| Returns: | |
| The embeddings of the input images. The shape should be (len(img_list), embedding_dim). | |
| """ | |
| raise NotImplementedError | |
| def encode_text(self, text_list: Sequence[str]) -> torch.Tensor: | |
| """ | |
| Encode the input text data and return the corresponding embeddings. | |
| Args: | |
| text_list: A list of strings. | |
| Returns: | |
| The embeddings of the input text data. The shape should be (len(text_list), embedding_dim). | |
| """ | |
| raise NotImplementedError | |
| def encode_3D(self, pc_tensor: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Encode the input 3D point cloud and return the corresponding embeddings. | |
| Args: | |
| pc_tensor: A tensor of shape (B, N, 3 + 3). | |
| Returns: | |
| The embeddings of the input 3D point cloud. The shape should be (B, embedding_dim). | |
| """ | |
| raise NotImplementedError | |
| def encode_query(self, queries: Sequence[str]) -> torch.Tensor: | |
| """Encode the queries and return the corresponding embeddings. | |
| Args: | |
| queries: A list of strings. | |
| Returns: | |
| The embeddings of the input text data. The shape should be (len(input_text), embedding_dim). | |
| """ | |
| raise NotImplementedError |