ved1beta
commited on
Commit
·
cb872ce
1
Parent(s):
dd39d5d
appready
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import subprocess
|
2 |
-
#
|
3 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
4 |
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
@@ -13,9 +13,14 @@ import torch
|
|
13 |
import spaces
|
14 |
|
15 |
model_id = "microsoft/Phi-3-vision-128k-instruct"
|
16 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
18 |
-
model.to("cpu")
|
19 |
|
20 |
PLACEHOLDER = """
|
21 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
@@ -30,30 +35,24 @@ def bot_streaming(message, history):
|
|
30 |
print(f'message is - {message}')
|
31 |
print(f'history is - {history}')
|
32 |
if message["files"]:
|
33 |
-
# message["files"][-1] is a Dict or just a string
|
34 |
if type(message["files"][-1]) == dict:
|
35 |
image = message["files"][-1]["path"]
|
36 |
else:
|
37 |
image = message["files"][-1]
|
38 |
else:
|
39 |
-
# if there's no image uploaded for this turn, look for images in the past turns
|
40 |
-
# kept inside tuples, take the last one
|
41 |
for hist in history:
|
42 |
if type(hist[0]) == tuple:
|
43 |
image = hist[0][0]
|
44 |
try:
|
45 |
if image is None:
|
46 |
-
# Handle the case where image is None
|
47 |
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
|
48 |
except NameError:
|
49 |
-
# Handle the case where 'image' is not defined at all
|
50 |
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
|
51 |
|
52 |
conversation = []
|
53 |
flag=False
|
54 |
for user, assistant in history:
|
55 |
if assistant is None:
|
56 |
-
#pass
|
57 |
flag=True
|
58 |
conversation.extend([{"role": "user", "content":""}])
|
59 |
continue
|
@@ -71,10 +70,17 @@ def bot_streaming(message, history):
|
|
71 |
print(f"prompt is -\n{conversation}")
|
72 |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
73 |
image = Image.open(image)
|
74 |
-
inputs = processor(prompt, image, return_tensors="pt")
|
75 |
|
76 |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|
77 |
-
generation_kwargs = dict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
80 |
thread.start()
|
@@ -84,7 +90,6 @@ def bot_streaming(message, history):
|
|
84 |
buffer += new_text
|
85 |
yield buffer
|
86 |
|
87 |
-
|
88 |
chatbot=gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
|
89 |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
|
90 |
with gr.Blocks(fill_height=True, ) as demo:
|
|
|
1 |
import subprocess
|
2 |
+
# Remove flash-attn installation
|
3 |
+
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
4 |
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
|
|
13 |
import spaces
|
14 |
|
15 |
model_id = "microsoft/Phi-3-vision-128k-instruct"
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
model_id,
|
18 |
+
device_map="cpu",
|
19 |
+
trust_remote_code=True,
|
20 |
+
torch_dtype=torch.float32, # Explicitly set to float32
|
21 |
+
attn_implementation="eager" # Disable FlashAttention
|
22 |
+
)
|
23 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
|
|
24 |
|
25 |
PLACEHOLDER = """
|
26 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
|
|
35 |
print(f'message is - {message}')
|
36 |
print(f'history is - {history}')
|
37 |
if message["files"]:
|
|
|
38 |
if type(message["files"][-1]) == dict:
|
39 |
image = message["files"][-1]["path"]
|
40 |
else:
|
41 |
image = message["files"][-1]
|
42 |
else:
|
|
|
|
|
43 |
for hist in history:
|
44 |
if type(hist[0]) == tuple:
|
45 |
image = hist[0][0]
|
46 |
try:
|
47 |
if image is None:
|
|
|
48 |
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
|
49 |
except NameError:
|
|
|
50 |
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
|
51 |
|
52 |
conversation = []
|
53 |
flag=False
|
54 |
for user, assistant in history:
|
55 |
if assistant is None:
|
|
|
56 |
flag=True
|
57 |
conversation.extend([{"role": "user", "content":""}])
|
58 |
continue
|
|
|
70 |
print(f"prompt is -\n{conversation}")
|
71 |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
72 |
image = Image.open(image)
|
73 |
+
inputs = processor(prompt, image, return_tensors="pt")
|
74 |
|
75 |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|
76 |
+
generation_kwargs = dict(
|
77 |
+
inputs,
|
78 |
+
streamer=streamer,
|
79 |
+
max_new_tokens=1024,
|
80 |
+
do_sample=False,
|
81 |
+
temperature=0.0,
|
82 |
+
eos_token_id=processor.tokenizer.eos_token_id
|
83 |
+
)
|
84 |
|
85 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
86 |
thread.start()
|
|
|
90 |
buffer += new_text
|
91 |
yield buffer
|
92 |
|
|
|
93 |
chatbot=gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
|
94 |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
|
95 |
with gr.Blocks(fill_height=True, ) as demo:
|