ved1beta
commited on
Commit
·
5b195c1
1
Parent(s):
fa73fe7
appready
Browse files
app.py
CHANGED
|
@@ -1,6 +1,3 @@
|
|
| 1 |
-
import subprocess
|
| 2 |
-
subprocess.run('pip install bitsandbytes', shell=True)
|
| 3 |
-
|
| 4 |
import gradio as gr
|
| 5 |
from PIL import Image
|
| 6 |
from transformers import AutoModelForCausalLM
|
|
@@ -15,29 +12,19 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 15 |
model_id,
|
| 16 |
device_map="cpu",
|
| 17 |
trust_remote_code=True,
|
| 18 |
-
torch_dtype=torch.
|
| 19 |
-
load_in_8bit=True, # 8-bit quantization
|
| 20 |
_attn_implementation="eager"
|
| 21 |
)
|
| 22 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 23 |
|
| 24 |
-
PLACEHOLDER = """
|
| 25 |
-
<div style="padding: 30px; text-align: center;">
|
| 26 |
-
<h1>Phi3 Vision Model</h1>
|
| 27 |
-
<p>Upload an image and ask a question</p>
|
| 28 |
-
</div>
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
@spaces.CPU
|
| 32 |
def bot_streaming(message, history):
|
| 33 |
try:
|
| 34 |
-
# Image extraction
|
| 35 |
image = (message["files"][-1]["path"] if isinstance(message["files"][-1], dict) else message["files"][-1]) if message["files"] else None
|
| 36 |
|
| 37 |
if not image:
|
| 38 |
raise ValueError("No image uploaded")
|
| 39 |
|
| 40 |
-
# Conversation preparation
|
| 41 |
conversation = []
|
| 42 |
for user, assistant in history:
|
| 43 |
conversation.extend([
|
|
@@ -47,17 +34,15 @@ def bot_streaming(message, history):
|
|
| 47 |
|
| 48 |
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
|
| 49 |
|
| 50 |
-
# Prompt and image processing
|
| 51 |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
| 52 |
image = Image.open(image)
|
| 53 |
inputs = processor(prompt, image, return_tensors="pt")
|
| 54 |
|
| 55 |
-
# Streaming generation with reduced tokens
|
| 56 |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
| 57 |
generation_kwargs = dict(
|
| 58 |
inputs,
|
| 59 |
streamer=streamer,
|
| 60 |
-
max_new_tokens=256,
|
| 61 |
do_sample=False,
|
| 62 |
temperature=0.1,
|
| 63 |
eos_token_id=processor.tokenizer.eos_token_id
|
|
@@ -74,20 +59,16 @@ def bot_streaming(message, history):
|
|
| 74 |
except Exception as e:
|
| 75 |
yield f"Error: {str(e)}"
|
| 76 |
|
| 77 |
-
# Gradio Interface Configuration
|
| 78 |
-
chatbot = gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
|
| 79 |
-
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Upload image and ask a question")
|
| 80 |
-
|
| 81 |
demo = gr.Blocks()
|
| 82 |
with demo:
|
| 83 |
gr.ChatInterface(
|
| 84 |
fn=bot_streaming,
|
| 85 |
title="Phi3 Vision 128K",
|
| 86 |
description="Multimodal AI Vision Model",
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
)
|
| 91 |
|
| 92 |
-
demo.queue(
|
| 93 |
-
demo.launch(debug=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
from transformers import AutoModelForCausalLM
|
|
|
|
| 12 |
model_id,
|
| 13 |
device_map="cpu",
|
| 14 |
trust_remote_code=True,
|
| 15 |
+
torch_dtype=torch.float32,
|
|
|
|
| 16 |
_attn_implementation="eager"
|
| 17 |
)
|
| 18 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
@spaces.CPU
|
| 21 |
def bot_streaming(message, history):
|
| 22 |
try:
|
|
|
|
| 23 |
image = (message["files"][-1]["path"] if isinstance(message["files"][-1], dict) else message["files"][-1]) if message["files"] else None
|
| 24 |
|
| 25 |
if not image:
|
| 26 |
raise ValueError("No image uploaded")
|
| 27 |
|
|
|
|
| 28 |
conversation = []
|
| 29 |
for user, assistant in history:
|
| 30 |
conversation.extend([
|
|
|
|
| 34 |
|
| 35 |
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
|
| 36 |
|
|
|
|
| 37 |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
| 38 |
image = Image.open(image)
|
| 39 |
inputs = processor(prompt, image, return_tensors="pt")
|
| 40 |
|
|
|
|
| 41 |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
| 42 |
generation_kwargs = dict(
|
| 43 |
inputs,
|
| 44 |
streamer=streamer,
|
| 45 |
+
max_new_tokens=256,
|
| 46 |
do_sample=False,
|
| 47 |
temperature=0.1,
|
| 48 |
eos_token_id=processor.tokenizer.eos_token_id
|
|
|
|
| 59 |
except Exception as e:
|
| 60 |
yield f"Error: {str(e)}"
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
demo = gr.Blocks()
|
| 63 |
with demo:
|
| 64 |
gr.ChatInterface(
|
| 65 |
fn=bot_streaming,
|
| 66 |
title="Phi3 Vision 128K",
|
| 67 |
description="Multimodal AI Vision Model",
|
| 68 |
+
examples=[
|
| 69 |
+
{"text": "Describe this image", "files": ["./example.jpg"]},
|
| 70 |
+
]
|
| 71 |
)
|
| 72 |
|
| 73 |
+
demo.queue()
|
| 74 |
+
demo.launch(debug=True)
|