Spaces:
Runtime error
Runtime error
first commit
Browse files
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import itertools
|
5 |
+
|
6 |
+
from konlpy.tag import Okt
|
7 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
# make function using import pip to install torch
|
12 |
+
import pip
|
13 |
+
pip.main(['install', 'torch'])
|
14 |
+
pip.main(['install', 'transformers'])
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import transformers
|
18 |
+
|
19 |
+
from transformers import BertTokenizerFast
|
20 |
+
from transformers import AutoModel
|
21 |
+
|
22 |
+
def make_candiadte(prompt):
|
23 |
+
okt = Okt()
|
24 |
+
tokenized_doc = okt.pos(prompt)
|
25 |
+
tokenized_nouns = ' '.join([word[0] for word in tokenized_doc if word[1] == 'Noun'])
|
26 |
+
|
27 |
+
n_gram_range = (2, 3)
|
28 |
+
|
29 |
+
count = CountVectorizer(ngram_range=n_gram_range).fit([tokenized_nouns])
|
30 |
+
candidates = count.get_feature_names_out()
|
31 |
+
|
32 |
+
return candidates
|
33 |
+
|
34 |
+
|
35 |
+
# saved_model
|
36 |
+
def load_model():
|
37 |
+
|
38 |
+
pretrained_model_name = "kykim/bert-kor-base"
|
39 |
+
|
40 |
+
tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name)
|
41 |
+
model = AutoModel.from_pretrained(pretrained_model_name)
|
42 |
+
|
43 |
+
return model, tokenizer
|
44 |
+
|
45 |
+
|
46 |
+
# main
|
47 |
+
def inference(prompt):
|
48 |
+
|
49 |
+
candidates = make_candiadte(prompt)
|
50 |
+
|
51 |
+
model, tokenizer = load_model()
|
52 |
+
|
53 |
+
input_ids = tokenizer.encode(prompt)
|
54 |
+
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
55 |
+
|
56 |
+
doc_embedding = model(input_ids)["pooler_output"]
|
57 |
+
|
58 |
+
top_n = 5
|
59 |
+
|
60 |
+
words = []
|
61 |
+
distances = []
|
62 |
+
|
63 |
+
for word in candidates:
|
64 |
+
input_ids = tokenizer.encode(word)
|
65 |
+
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
66 |
+
word_embedding = model(input_ids)["pooler_output"]
|
67 |
+
|
68 |
+
distance = torch.cosine_similarity(doc_embedding, word_embedding, dim=1).item()
|
69 |
+
|
70 |
+
words.append(word)
|
71 |
+
distances.append(distance)
|
72 |
+
|
73 |
+
#print(word, torch.cosine_similarity(doc_embedding, word_embedding, dim=1).item())
|
74 |
+
|
75 |
+
cos_df = pd.DataFrame({'word':words, 'distance':distances})
|
76 |
+
|
77 |
+
# sort by distance
|
78 |
+
cos_df = cos_df.sort_values(by='distance', ascending=False)
|
79 |
+
|
80 |
+
# top n
|
81 |
+
cos_df = cos_df[:top_n]
|
82 |
+
|
83 |
+
cos_df["word"].values
|
84 |
+
|
85 |
+
outputs = " ".join(["#" + s for s in cos_df["word"].values])
|
86 |
+
|
87 |
+
outputs
|
88 |
+
|
89 |
+
return outputs
|
90 |
+
|
91 |
+
|
92 |
+
demo = gr.Interface(
|
93 |
+
fn=inference,
|
94 |
+
inputs="text",
|
95 |
+
outputs="text" #return ๊ฐ
|
96 |
+
).launch() # launch(share=True)๋ฅผ ์ค์ ํ๋ฉด ์ธ๋ถ์์ ์ ์ ๊ฐ๋ฅํ ๋งํฌ๊ฐ ์์ฑ๋จ
|
97 |
+
|
98 |
+
demo.launch()
|