Lj Miranda
commited on
Add ability to incorporate external submissions (#7)
Browse files- app.py +68 -9
- src/about.py +8 -21
- src/schema.py +160 -49
app.py
CHANGED
@@ -1,10 +1,13 @@
|
|
|
|
1 |
import os
|
2 |
import re
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
from datasets import load_dataset
|
|
|
8 |
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
|
9 |
from huggingface_hub import HfApi
|
10 |
|
@@ -13,6 +16,13 @@ from src.display.css_html_js import custom_css
|
|
13 |
from src.plots import plot_cost_efficiency, plot_parameter_efficiency
|
14 |
from src.schema import AutoEvalColumn, EvalResult, fields
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# 1. Initialization
|
17 |
_hf_token = os.environ.get("HF_TOKEN")
|
18 |
if not _hf_token:
|
@@ -22,6 +32,7 @@ api = HfApi(token=_hf_token)
|
|
22 |
|
23 |
REPO_ID = "UD-Filipino/filbench-leaderboard"
|
24 |
REPO_RESULTS = "UD-Filipino/filbench-results"
|
|
|
25 |
|
26 |
|
27 |
def restart_space():
|
@@ -29,11 +40,44 @@ def restart_space():
|
|
29 |
|
30 |
|
31 |
# 2. Load and populate leaderboard data
|
32 |
-
def get_results(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
results = load_dataset(source, split="train").to_pandas().to_dict(orient="records")
|
34 |
raw_data = [EvalResult.init_from_dict(result) for result in results]
|
35 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
df = pd.DataFrame.from_records(all_data_json)
|
38 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
39 |
df["Incomplete"] = ~df.isna().any(axis=1)
|
@@ -58,8 +102,12 @@ def get_results(source: str, aggregate: bool = False) -> tuple[pd.DataFrame, lis
|
|
58 |
return df, master_columns
|
59 |
|
60 |
|
61 |
-
def init_leaderboard(
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
|
64 |
return Leaderboard(
|
65 |
value=df,
|
@@ -80,6 +128,7 @@ def init_leaderboard(source: str, aggregate: bool = False) -> Leaderboard:
|
|
80 |
filter_columns=[
|
81 |
# fmt: off
|
82 |
ColumnFilter("Incomplete", type="boolean", label="Hide incomplete evaluations", default=True),
|
|
|
83 |
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
84 |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model type"),
|
85 |
ColumnFilter(AutoEvalColumn.multilingual.name, type="checkboxgroup", label="Multilinguality"),
|
@@ -97,8 +146,12 @@ def init_leaderboard(source: str, aggregate: bool = False) -> Leaderboard:
|
|
97 |
|
98 |
|
99 |
def get_clean_df() -> pd.DataFrame:
|
100 |
-
df, _ = get_results(
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
# Cleanup
|
104 |
def extract_names(html_string):
|
@@ -165,19 +218,25 @@ def download_results():
|
|
165 |
demo = gr.Blocks(css=custom_css)
|
166 |
with demo:
|
167 |
with gr.Column(scale=6):
|
168 |
-
num_models = len(
|
|
|
|
|
169 |
gr.Markdown(about.TOP_TEXT.format(str(num_models)))
|
170 |
|
171 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
172 |
with gr.TabItem(
|
173 |
"🏅 FilBench Leaderboard", elem_id="llm-benchmark-tab-table", id=0
|
174 |
):
|
175 |
-
leaderboard = init_leaderboard(
|
|
|
|
|
176 |
|
177 |
with gr.TabItem(
|
178 |
"🔍 FilBench - Detailed", elem_id="llm-benchmark-tab-table", id=1
|
179 |
):
|
180 |
-
leaderboard = init_leaderboard(
|
|
|
|
|
181 |
|
182 |
with gr.TabItem("📊 Analysis", id=2):
|
183 |
df = get_clean_df()
|
|
|
1 |
+
import logging
|
2 |
import os
|
3 |
import re
|
4 |
+
import sys
|
5 |
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
from datasets import load_dataset
|
10 |
+
from datasets.data_files import EmptyDatasetError
|
11 |
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
|
12 |
from huggingface_hub import HfApi
|
13 |
|
|
|
16 |
from src.plots import plot_cost_efficiency, plot_parameter_efficiency
|
17 |
from src.schema import AutoEvalColumn, EvalResult, fields
|
18 |
|
19 |
+
logging.basicConfig(
|
20 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
21 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
22 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
23 |
+
level=logging.INFO,
|
24 |
+
)
|
25 |
+
|
26 |
# 1. Initialization
|
27 |
_hf_token = os.environ.get("HF_TOKEN")
|
28 |
if not _hf_token:
|
|
|
32 |
|
33 |
REPO_ID = "UD-Filipino/filbench-leaderboard"
|
34 |
REPO_RESULTS = "UD-Filipino/filbench-results"
|
35 |
+
SUBMISSION_RESULTS = "UD-Filipino/filbench-results-submission"
|
36 |
|
37 |
|
38 |
def restart_space():
|
|
|
40 |
|
41 |
|
42 |
# 2. Load and populate leaderboard data
|
43 |
+
def get_results(
|
44 |
+
source: str, aggregate: bool = False, submissions: str = None
|
45 |
+
) -> tuple[pd.DataFrame, list]:
|
46 |
+
"""Load results from a given source and return a DataFrame with the relevant columns.
|
47 |
+
|
48 |
+
If `aggregate` is True, it returns the aggregated results.
|
49 |
+
|
50 |
+
source (str): The source dataset to load results from.
|
51 |
+
aggregate (bool): Whether to return aggregated results or not.
|
52 |
+
submissions (str, optional): The submissions dataset to load results from.
|
53 |
+
RETURNS (tuple[pd.DataFrame, list]): A tuple containing the DataFrame with results and a list of master columns.
|
54 |
+
"""
|
55 |
results = load_dataset(source, split="train").to_pandas().to_dict(orient="records")
|
56 |
raw_data = [EvalResult.init_from_dict(result) for result in results]
|
|
|
57 |
|
58 |
+
if submissions:
|
59 |
+
try:
|
60 |
+
submission_results = (
|
61 |
+
load_dataset(
|
62 |
+
submissions, split="train", download_mode="force_redownload"
|
63 |
+
)
|
64 |
+
.to_pandas()
|
65 |
+
.to_dict(orient="records")
|
66 |
+
)
|
67 |
+
except EmptyDatasetError:
|
68 |
+
logging.info("Empty dataset for submissions, skipping...")
|
69 |
+
submission_results = []
|
70 |
+
if len(submission_results) == 0:
|
71 |
+
logging.info("No external submissions found!")
|
72 |
+
else:
|
73 |
+
logging.info(f"Found {len(submission_results)} submission/s!")
|
74 |
+
|
75 |
+
raw_data += [
|
76 |
+
EvalResult.init_from_dict(result, is_submission=True)
|
77 |
+
for result in submission_results
|
78 |
+
]
|
79 |
+
|
80 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
81 |
df = pd.DataFrame.from_records(all_data_json)
|
82 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
83 |
df["Incomplete"] = ~df.isna().any(axis=1)
|
|
|
102 |
return df, master_columns
|
103 |
|
104 |
|
105 |
+
def init_leaderboard(
|
106 |
+
source: str, aggregate: bool = False, submissions: str = None
|
107 |
+
) -> Leaderboard:
|
108 |
+
df, master_columns = get_results(
|
109 |
+
source=source, aggregate=aggregate, submissions=submissions
|
110 |
+
)
|
111 |
|
112 |
return Leaderboard(
|
113 |
value=df,
|
|
|
128 |
filter_columns=[
|
129 |
# fmt: off
|
130 |
ColumnFilter("Incomplete", type="boolean", label="Hide incomplete evaluations", default=True),
|
131 |
+
ColumnFilter("Submission", type="boolean", label="Show only submitted results", default=False),
|
132 |
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
133 |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model type"),
|
134 |
ColumnFilter(AutoEvalColumn.multilingual.name, type="checkboxgroup", label="Multilinguality"),
|
|
|
146 |
|
147 |
|
148 |
def get_clean_df() -> pd.DataFrame:
|
149 |
+
df, _ = get_results(
|
150 |
+
source=REPO_RESULTS, aggregate=False, submissions=SUBMISSION_RESULTS
|
151 |
+
)
|
152 |
+
df_agg, _ = get_results(
|
153 |
+
source=REPO_RESULTS, aggregate=True, submissions=SUBMISSION_RESULTS
|
154 |
+
)
|
155 |
|
156 |
# Cleanup
|
157 |
def extract_names(html_string):
|
|
|
218 |
demo = gr.Blocks(css=custom_css)
|
219 |
with demo:
|
220 |
with gr.Column(scale=6):
|
221 |
+
num_models = len(
|
222 |
+
get_results(REPO_RESULTS, aggregate=True, submissions=SUBMISSION_RESULTS)[0]
|
223 |
+
)
|
224 |
gr.Markdown(about.TOP_TEXT.format(str(num_models)))
|
225 |
|
226 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
227 |
with gr.TabItem(
|
228 |
"🏅 FilBench Leaderboard", elem_id="llm-benchmark-tab-table", id=0
|
229 |
):
|
230 |
+
leaderboard = init_leaderboard(
|
231 |
+
REPO_RESULTS, aggregate=True, submissions=SUBMISSION_RESULTS
|
232 |
+
)
|
233 |
|
234 |
with gr.TabItem(
|
235 |
"🔍 FilBench - Detailed", elem_id="llm-benchmark-tab-table", id=1
|
236 |
):
|
237 |
+
leaderboard = init_leaderboard(
|
238 |
+
REPO_RESULTS, aggregate=False, submissions=SUBMISSION_RESULTS
|
239 |
+
)
|
240 |
|
241 |
with gr.TabItem("📊 Analysis", id=2):
|
242 |
df = get_clean_df()
|
src/about.py
CHANGED
@@ -11,7 +11,8 @@ current_time = datetime.now(pacific_tz).strftime("%H:%M %Z, %d %b %Y")
|
|
11 |
TOP_TEXT = f"""
|
12 |
# FilBench: An Open LLM Leaderboard for Filipino
|
13 |
|
14 |
-
[Code](https://github.com/filbench/filbench) | [
|
|
|
15 |
"""
|
16 |
|
17 |
# Leaderboard reproducibility
|
@@ -27,7 +28,6 @@ We average four core sections (weighted by the number of instances):
|
|
27 |
3. **Reading Comprehension:** Contains more focused natural language understanding (NLU) tasks and questions from readability benchmarks.
|
28 |
4. **Generation:** Contains instances for natural language generation (NLG), more focused on translation.
|
29 |
|
30 |
-
|
31 |
## Evaluation Runner
|
32 |
|
33 |
We use our own fork of [lighteval](https://github.com/filbench/lighteval) to perform evaluations.
|
@@ -35,30 +35,17 @@ We highly recommend using the vLLM backend for faster inference.
|
|
35 |
Sequentially, evaluating on FilBench can take 4.93 hours on 2 NVIDIA H100 GPUs.
|
36 |
However, the evaluation suite can be parallelized per benchmark, where the longest-running task can take approximately 1 hour and 28 minutes, and the shortest task takes only 5.86 minutes.
|
37 |
|
38 |
-
To evaluate your model on FilBench and for it to appear in the leaderboard, please follow
|
39 |
-
|
40 |
-
1. First clone the FilBench's lighteval repository and install all dependencies:
|
41 |
-
|
42 |
-
```sh
|
43 |
-
git clone https://github.com/filbench/lighteval.git
|
44 |
-
python3 -m venv venv
|
45 |
-
pip install -e .[dev,vllm]
|
46 |
-
```
|
47 |
-
|
48 |
-
2. Run the evaluation runner via vLLM
|
49 |
|
50 |
-
|
51 |
-
python3 -m lighteval vllm ${MODEL_NAME} ${TASK_NAME} \\
|
52 |
-
--push-to-hub \\
|
53 |
-
--results-org UD-Filipino \\
|
54 |
-
--custom-tasks community_tasks/filbench_evals.py
|
55 |
-
```
|
56 |
|
57 |
-
|
|
|
58 |
|
59 |
## Acknowledgements
|
60 |
|
61 |
-
|
|
|
62 |
"""
|
63 |
|
64 |
# Citation information
|
|
|
11 |
TOP_TEXT = f"""
|
12 |
# FilBench: An Open LLM Leaderboard for Filipino
|
13 |
|
14 |
+
[Code](https://github.com/filbench/filbench-eval) | [Paper (<i>Coming soon!</i>)]() | Total Models: {{}} | Last restart (PHT): {current_time}
|
15 |
+
📥: Indicates model submissions from the community. If you wish to submit your model evaluations, then please check our instructions on [GitHub](https://github.com/filbench/filbench-eval).
|
16 |
"""
|
17 |
|
18 |
# Leaderboard reproducibility
|
|
|
28 |
3. **Reading Comprehension:** Contains more focused natural language understanding (NLU) tasks and questions from readability benchmarks.
|
29 |
4. **Generation:** Contains instances for natural language generation (NLG), more focused on translation.
|
30 |
|
|
|
31 |
## Evaluation Runner
|
32 |
|
33 |
We use our own fork of [lighteval](https://github.com/filbench/lighteval) to perform evaluations.
|
|
|
35 |
Sequentially, evaluating on FilBench can take 4.93 hours on 2 NVIDIA H100 GPUs.
|
36 |
However, the evaluation suite can be parallelized per benchmark, where the longest-running task can take approximately 1 hour and 28 minutes, and the shortest task takes only 5.86 minutes.
|
37 |
|
38 |
+
To evaluate your model on FilBench and for it to appear in the leaderboard, please follow the steps in our [Github repository](https://github.com/filbench/filbench-eval).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
## Contact
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
This work was done by Lj V. Miranda ([@ljvmiranda921](https://github.com/ljvmiranda921)), Elyanah Aco ([@elyanah-aco](https://github.com/elyanah-aco)), Conner Manuel ([@connermanuel](https://github.com/connermanuel)), Blaise Cruz ([@jcblaisecruz02](https://github.com/jcblaisecruz02)), and Joseph Imperial ([@imperialite](https://github.com/imperialite)).
|
43 |
+
For any questions, please reach out to us via [email protected] or through our [GitHub Issues](https://github.com/filbench/filbench-eval/issues).
|
44 |
|
45 |
## Acknowledgements
|
46 |
|
47 |
+
We would like to thank [Cohere Labs](https://cohere.com/research) for providing credits through the [Cohere Research Grant](https://cohere.com/research/grants) to run the Aya model series, and [Together AI](https://together.ai) for additional computational credits for running several open models.
|
48 |
+
We also acknowledge the Hugging Face team, particularly the OpenEvals team (Clémentine Fourrier [@clefourrier](https://github.com/clefourrier) and Nathan Habib [@NathanHB](https://github.com/NathanHB)) and Daniel van Strien [@davanstrien](https://github.com/davanstrien), for their support in publishing the FilBench blog post.
|
49 |
"""
|
50 |
|
51 |
# Citation information
|
src/schema.py
CHANGED
@@ -1,9 +1,18 @@
|
|
|
|
|
|
1 |
from dataclasses import dataclass, make_dataclass
|
2 |
from enum import Enum
|
3 |
|
4 |
import numpy as np
|
5 |
|
6 |
-
from src.display.formatting import make_clickable_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
def fields(raw_class):
|
@@ -147,6 +156,8 @@ auto_eval_cols = [
|
|
147 |
["param_size", ColumnContent, ColumnContent("# Parameters", "number", False, meta=True)],
|
148 |
["multilingual", ColumnContent, ColumnContent("Multilingual", "markdown", False, meta=True)],
|
149 |
["model_type", ColumnContent, ColumnContent("Model Type", "markdown", False, meta=True)],
|
|
|
|
|
150 |
# fmt: on
|
151 |
]
|
152 |
for task in Tasks:
|
@@ -199,16 +210,28 @@ class EvalResult:
|
|
199 |
average: float
|
200 |
aggregate_results: dict
|
201 |
precision: Precision = Precision.Unknown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
@classmethod
|
204 |
-
def init_from_dict(self, data: dict):
|
205 |
"""Populate results from a dictionary"""
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
precision = Precision.from_str(config.get("model_dtype"))
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
212 |
org_and_model = org_and_model.split("/", 1)
|
213 |
|
214 |
if len(org_and_model) == 1:
|
@@ -221,35 +244,105 @@ class EvalResult:
|
|
221 |
result_key = f"{org}_{model}_{precision.value.name}"
|
222 |
full_model = "/".join(org_and_model)
|
223 |
|
|
|
|
|
|
|
|
|
224 |
# Format all results
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
for task in Tasks:
|
228 |
task = task.value
|
229 |
-
if
|
230 |
-
score =
|
231 |
if "acc_" in task.metric:
|
232 |
score = score * 100.0
|
233 |
if "rougeL" in task.metric:
|
234 |
score = score * 100.0
|
235 |
-
|
236 |
else:
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
# task = task.value
|
243 |
-
# if results[task.benchmark]:
|
244 |
-
# score = results[task.benchmark]
|
245 |
-
# else:
|
246 |
-
# score = 0
|
247 |
-
# weighted_total += score * task.num_samples
|
248 |
-
|
249 |
-
# total = sum([task.value.num_samples for task in Tasks])
|
250 |
-
# average = weighted_total / total
|
251 |
-
|
252 |
-
# Compute weighted average for each category
|
253 |
aggregate_results = {}
|
254 |
for task_category in TaskCategory:
|
255 |
tasks = [
|
@@ -266,41 +359,59 @@ class EvalResult:
|
|
266 |
aggregate_results[task_category.value] = (
|
267 |
weighted_total_category / total_category
|
268 |
)
|
|
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
283 |
|
284 |
def to_dict(self):
|
285 |
"""Converts the EvalResult to a dict compatible with our dataframe display"""
|
286 |
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
|
|
|
|
|
|
|
|
|
|
296 |
data_dict = {
|
297 |
"eval_name": self.eval_name, # not a column, just a save name
|
298 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
299 |
-
AutoEvalColumn.model.name:
|
300 |
AutoEvalColumn.average.name: self.average,
|
301 |
AutoEvalColumn.param_size.name: model_details.param_size,
|
302 |
AutoEvalColumn.model_type.name: model_details.model_type,
|
303 |
AutoEvalColumn.multilingual.name: model_details.multilingual,
|
|
|
|
|
304 |
}
|
305 |
|
306 |
for task in Tasks:
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
from dataclasses import dataclass, make_dataclass
|
4 |
from enum import Enum
|
5 |
|
6 |
import numpy as np
|
7 |
|
8 |
+
from src.display.formatting import make_clickable_model, model_hyperlink
|
9 |
+
|
10 |
+
logging.basicConfig(
|
11 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
12 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
13 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
14 |
+
level=logging.INFO,
|
15 |
+
)
|
16 |
|
17 |
|
18 |
def fields(raw_class):
|
|
|
156 |
["param_size", ColumnContent, ColumnContent("# Parameters", "number", False, meta=True)],
|
157 |
["multilingual", ColumnContent, ColumnContent("Multilingual", "markdown", False, meta=True)],
|
158 |
["model_type", ColumnContent, ColumnContent("Model Type", "markdown", False, meta=True)],
|
159 |
+
["is_submission", ColumnContent, ColumnContent("Submission", "boolean", False, meta=True)],
|
160 |
+
["submission_date", ColumnContent, ColumnContent("Submission Date", "str", False, meta=True)],
|
161 |
# fmt: on
|
162 |
]
|
163 |
for task in Tasks:
|
|
|
210 |
average: float
|
211 |
aggregate_results: dict
|
212 |
precision: Precision = Precision.Unknown
|
213 |
+
# Submission metadata
|
214 |
+
is_submission: bool = False
|
215 |
+
param_size: float = -1
|
216 |
+
model_type: str = ModelType.UNKNOWN.value
|
217 |
+
multilingual: str = Multilingual.UNKNOWN.value
|
218 |
+
submission_date: str = ""
|
219 |
+
model_url: str = "https://huggingface.co/spaces/UD-Filipino/filbench-leaderboard"
|
220 |
|
221 |
@classmethod
|
222 |
+
def init_from_dict(self, data: dict, is_submission: bool = False) -> "EvalResult":
|
223 |
"""Populate results from a dictionary"""
|
224 |
|
225 |
+
# For model details, use user-provided metadata if it's a submission
|
226 |
+
config_key = "display_metadata" if is_submission else "config"
|
227 |
+
config = data.get(config_key)
|
228 |
precision = Precision.from_str(config.get("model_dtype"))
|
229 |
+
|
230 |
+
org_and_model = (
|
231 |
+
config.get("hf_id")
|
232 |
+
if is_submission
|
233 |
+
else config.get("model_name", config.get("model_args", None))
|
234 |
+
)
|
235 |
org_and_model = org_and_model.split("/", 1)
|
236 |
|
237 |
if len(org_and_model) == 1:
|
|
|
244 |
result_key = f"{org}_{model}_{precision.value.name}"
|
245 |
full_model = "/".join(org_and_model)
|
246 |
|
247 |
+
results = EvalResult.compute_scores_per_benchmark(data.get("results"))
|
248 |
+
aggregate_results = EvalResult.compute_aggregate_results(results)
|
249 |
+
filbench_score = np.mean(list(aggregate_results.values()))
|
250 |
+
|
251 |
# Format all results
|
252 |
+
if is_submission:
|
253 |
+
# Use pre-computed scores and check if they match our computed scores
|
254 |
+
category_scores = data.get("category_scores")
|
255 |
+
aggregate_results_precomputed = {
|
256 |
+
TaskCategory.CULTURAL_KNOWLEDGE.value: category_scores.get(
|
257 |
+
"CULTURAL_KNOWLEDGE"
|
258 |
+
),
|
259 |
+
TaskCategory.CLASSICAL_NLP.value: category_scores.get("CLASSICAL_NLP"),
|
260 |
+
TaskCategory.READING_COMPREHENSION.value: category_scores.get(
|
261 |
+
"READING_COMPREHENSION"
|
262 |
+
),
|
263 |
+
TaskCategory.TRANSLATION.value: category_scores.get("GENERATION"),
|
264 |
+
}
|
265 |
+
is_similar = EvalResult.compare_category_scores(
|
266 |
+
precomputed=aggregate_results_precomputed,
|
267 |
+
computed=aggregate_results,
|
268 |
+
)
|
269 |
+
if not is_similar:
|
270 |
+
logging.warning("Precomputed and computed category scores differ.")
|
271 |
+
logging.info("Will use computed scores for display.")
|
272 |
+
else:
|
273 |
+
logging.info("Precomputed and computed category scores are similar.")
|
274 |
+
aggregate_results = aggregate_results_precomputed
|
275 |
+
|
276 |
+
# Do the same comparison for FilBench score
|
277 |
+
filbench_score_precomputed = data.get("filbench_score")
|
278 |
+
is_filbench_score_similar = (
|
279 |
+
abs(filbench_score_precomputed - filbench_score) < 1e-2
|
280 |
+
)
|
281 |
+
if not is_filbench_score_similar:
|
282 |
+
logging.warning(
|
283 |
+
f"Precomputed filbench_score ({filbench_score_precomputed}) and"
|
284 |
+
f" official FilBench score ({filbench_score}) differ."
|
285 |
+
)
|
286 |
+
average = (
|
287 |
+
filbench_score_precomputed
|
288 |
+
if is_filbench_score_similar
|
289 |
+
else filbench_score
|
290 |
+
)
|
291 |
+
display_metadata = data.get("display_metadata")
|
292 |
+
|
293 |
+
return EvalResult(
|
294 |
+
eval_name=result_key,
|
295 |
+
full_model=full_model,
|
296 |
+
org=org,
|
297 |
+
model=model,
|
298 |
+
precision=precision,
|
299 |
+
results=results,
|
300 |
+
aggregate_results=aggregate_results,
|
301 |
+
average=average,
|
302 |
+
# Display Metadata
|
303 |
+
is_submission=True,
|
304 |
+
submission_date=display_metadata.get("submission_date", ""),
|
305 |
+
param_size=display_metadata.get("num_params", -1),
|
306 |
+
model_type=display_metadata.get("model_type", ModelType.UNKNOWN.value),
|
307 |
+
multilingual=display_metadata.get(
|
308 |
+
"multilinguality", Multilingual.UNKNOWN.value
|
309 |
+
),
|
310 |
+
model_url=display_metadata.get(
|
311 |
+
"url",
|
312 |
+
"https://huggingface.co/spaces/UD-Filipino/filbench-leaderboard",
|
313 |
+
),
|
314 |
+
)
|
315 |
+
else:
|
316 |
+
return self(
|
317 |
+
eval_name=result_key,
|
318 |
+
full_model=full_model,
|
319 |
+
org=org,
|
320 |
+
model=model,
|
321 |
+
precision=precision,
|
322 |
+
results=results,
|
323 |
+
aggregate_results=aggregate_results,
|
324 |
+
is_submission=False,
|
325 |
+
average=filbench_score,
|
326 |
+
)
|
327 |
+
|
328 |
+
@classmethod
|
329 |
+
def compute_scores_per_benchmark(cls, results: dict) -> dict[str, float]:
|
330 |
+
scores_per_benchmark = {}
|
331 |
for task in Tasks:
|
332 |
task = task.value
|
333 |
+
if results.get(task.benchmark):
|
334 |
+
score = results.get(task.benchmark).get(task.metric)
|
335 |
if "acc_" in task.metric:
|
336 |
score = score * 100.0
|
337 |
if "rougeL" in task.metric:
|
338 |
score = score * 100.0
|
339 |
+
scores_per_benchmark[task.benchmark] = score
|
340 |
else:
|
341 |
+
scores_per_benchmark[task.benchmark] = None
|
342 |
+
return scores_per_benchmark
|
343 |
+
|
344 |
+
@classmethod
|
345 |
+
def compute_aggregate_results(cls, results: dict) -> dict[str, float]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
aggregate_results = {}
|
347 |
for task_category in TaskCategory:
|
348 |
tasks = [
|
|
|
359 |
aggregate_results[task_category.value] = (
|
360 |
weighted_total_category / total_category
|
361 |
)
|
362 |
+
return aggregate_results
|
363 |
|
364 |
+
@classmethod
|
365 |
+
def compare_category_scores(
|
366 |
+
cls, precomputed: dict, computed: dict, threshold: float = 1e-2
|
367 |
+
) -> bool:
|
368 |
+
"""Compares precomputed and computed category scores."""
|
369 |
+
is_similar = True
|
370 |
+
for key, precomputed_value in precomputed.items():
|
371 |
+
computed_value = computed.get(key)
|
372 |
+
if precomputed_value is not None and computed_value is not None:
|
373 |
+
if abs(precomputed_value - computed_value) > threshold:
|
374 |
+
logging.warning(
|
375 |
+
f"Aggregate result for '{key}' differs"
|
376 |
+
f" (precomputed={precomputed_value}, computed={computed_value})"
|
377 |
+
)
|
378 |
+
is_similar = False
|
379 |
+
return is_similar
|
380 |
|
381 |
def to_dict(self):
|
382 |
"""Converts the EvalResult to a dict compatible with our dataframe display"""
|
383 |
|
384 |
+
if not self.is_submission:
|
385 |
+
model_details = model_registry.get(
|
386 |
+
self.full_model,
|
387 |
+
ModelSUT(
|
388 |
+
param_size=-1,
|
389 |
+
model_type=ModelType.UNKNOWN.value,
|
390 |
+
multilingual=Multilingual.UNKNOWN.value,
|
391 |
+
),
|
392 |
+
)
|
393 |
+
else:
|
394 |
+
model_details = ModelSUT(
|
395 |
+
param_size=self.param_size,
|
396 |
+
model_type=self.model_type,
|
397 |
+
multilingual=self.multilingual,
|
398 |
+
)
|
399 |
|
400 |
+
model_name_with_url = (
|
401 |
+
make_clickable_model(self.full_model)
|
402 |
+
if not self.is_submission
|
403 |
+
else f"📥 {model_hyperlink(self.model_url, self.full_model)}"
|
404 |
+
)
|
405 |
data_dict = {
|
406 |
"eval_name": self.eval_name, # not a column, just a save name
|
407 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
408 |
+
AutoEvalColumn.model.name: model_name_with_url,
|
409 |
AutoEvalColumn.average.name: self.average,
|
410 |
AutoEvalColumn.param_size.name: model_details.param_size,
|
411 |
AutoEvalColumn.model_type.name: model_details.model_type,
|
412 |
AutoEvalColumn.multilingual.name: model_details.multilingual,
|
413 |
+
AutoEvalColumn.is_submission.name: self.is_submission,
|
414 |
+
AutoEvalColumn.submission_date.name: self.submission_date,
|
415 |
}
|
416 |
|
417 |
for task in Tasks:
|