Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import unicodedata | |
import re | |
import numpy as np | |
from pathlib import Path | |
from transformers import AutoTokenizer, AutoModel # AutoModelForCausalLM μπορεί να είναι εναλλακτική για Llama | |
from sklearn.feature_extraction.text import HashingVectorizer | |
from sklearn.preprocessing import normalize as sk_normalize | |
import chromadb | |
import joblib | |
import pickle | |
import scipy.sparse | |
import textwrap | |
import os | |
import json # Για το διάβασμα του JSON κατά το setup | |
import tqdm.auto as tq # Για progress bars κατά το setup | |
# --------------------------- CONFIG για ChatbotVol109 ----------------------------------- | |
# --- Ρυθμίσεις Μοντέλου και Βάσης Δεδομένων --- | |
MODEL_NAME = "ilsp/Llama-Krikri-8B-Base" # ΝΕΟ ΜΟΝΤΕΛΟ | |
PERSISTENT_STORAGE_ROOT = Path("/data") # Για Hugging Face Spaces Persistent Storage | |
DB_DIR_APP = PERSISTENT_STORAGE_ROOT / "chroma_db_ChatbotVol109" # ΝΕΟ PATH | |
COL_NAME = "collection_chatbotvol109" # ΝΕΟ ΟΝΟΜΑ ΣΥΛΛΟΓΗΣ | |
ASSETS_DIR_APP = PERSISTENT_STORAGE_ROOT / "assets_ChatbotVol109" # ΝΕΟ PATH ASSETS | |
DATA_PATH_FOR_SETUP = "./dataset14.json" # Διατηρήστε ή αλλάξτε αν το dataset είναι διαφορετικό | |
# --- Ρυθμίσεις για Google Cloud Storage για τα PDF links --- | |
GCS_BUCKET_NAME = "chatbotthesisihu" # Το δικό σας GCS Bucket Name | |
GCS_PUBLIC_URL_PREFIX = f"https://storage.googleapis.com/{GCS_BUCKET_NAME}/" | |
# ------------------------------------------------------------- | |
# --- Παράμετροι Αναζήτησης και Μοντέλου --- | |
CHUNK_SIZE = 512 # Εξετάστε την αύξηση αυτού για Llama (π.χ. 1024, 2048), ανάλογα με τη μνήμη και το context window του μοντέλου | |
CHUNK_OVERLAP = 40 | |
BATCH_EMB = 4 # Μειωμένο BATCH_EMB για μεγάλα μοντέλα όπως το Llama 8B | |
ALPHA_BASE = 0.2 | |
ALPHA_LONGQ = 0.35 | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Το device_map="auto" θα χειριστεί την τοποθέτηση του μοντέλου | |
print(f"Running ChatbotVol109 on main device context: {DEVICE}") # Το μοντέλο μπορεί να είναι κατανεμημένο | |
print(f"Using model: {MODEL_NAME}") | |
# === ΛΟΓΙΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΒΑΣΗΣ ΚΑΙ ASSETS (Αν δεν υπάρχουν) === | |
def setup_database_and_assets(): | |
print("Checking if database and assets need to be created for ChatbotVol109...") | |
run_setup = True | |
if DB_DIR_APP.exists() and ASSETS_DIR_APP.exists() and (ASSETS_DIR_APP / "ids.pkl").exists(): | |
try: | |
client_check = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve())) | |
collection_check = client_check.get_collection(name=COL_NAME) | |
if collection_check.count() > 0: | |
print("✓ Database and assets for ChatbotVol109 appear to exist and collection is populated. Skipping setup.") | |
run_setup = False | |
else: | |
print("Collection exists but is empty. Proceeding with setup for ChatbotVol109.") | |
if DB_DIR_APP.exists(): | |
import shutil | |
print(f"Attempting to clean up existing empty/corrupt DB directory: {DB_DIR_APP}") | |
shutil.rmtree(DB_DIR_APP) | |
except Exception as e_check: | |
print(f"Database or collection check failed (Error: {e_check}). Proceeding with setup for ChatbotVol109.") | |
if DB_DIR_APP.exists(): | |
import shutil | |
print(f"Attempting to clean up existing corrupt DB directory: {DB_DIR_APP}") | |
shutil.rmtree(DB_DIR_APP) | |
if not run_setup: | |
return True | |
print(f"!Database/Assets for ChatbotVol109 not found or incomplete. Starting setup process.") | |
print(f"This will take a very long time, especially on the first run with a large model!") | |
ASSETS_DIR_APP.mkdir(parents=True, exist_ok=True) | |
DB_DIR_APP.mkdir(parents=True, exist_ok=True) | |
def _strip_acc_setup(s:str)->str: return ''.join(ch for ch in unicodedata.normalize('NFD', s) if not unicodedata.combining(ch)) | |
_STOP_SETUP = {"σχετικο","σχετικά","με","και"} | |
def _preprocess_setup(txt:str)->str: | |
txt = _strip_acc_setup(txt.lower()) | |
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt) | |
txt = re.sub(r"\s+", " ", txt).strip() | |
return " ".join(w for w in txt.split() if w not in _STOP_SETUP) | |
def _chunk_text_setup(text, tokenizer_setup): | |
# Η λογική του chunking παραμένει ίδια, αλλά το CHUNK_SIZE μπορεί να προσαρμοστεί | |
token_ids = tokenizer_setup.encode(text, add_special_tokens=False) | |
if len(token_ids) <= (CHUNK_SIZE - tokenizer_setup.model_max_length + tokenizer_setup.max_len_single_sentence): # Προσαρμογή για special tokens | |
return [text] | |
# Η παρακάτω λογική μπορεί να χρειαστεί προσαρμογή ανάλογα με το πώς το Llama tokenizer χειρίζεται τα special tokens για chunking. | |
# Για απλότητα, διατηρούμε την υπάρχουσα λογική chunking με βάση τα token IDs. | |
# ids_with_special_tokens = tokenizer_setup(text, truncation=False, padding=False)["input_ids"] # Αυτό μπορεί να είναι πολύ μεγάλο | |
# Απλοποιημένη προσέγγιση chunking με βάση το CHUNK_SIZE για tokens | |
# Χρησιμοποιούμε text_target για να βρούμε tokens χωρίς special tokens για το split | |
text_target = tokenizer_setup.decode(tokenizer_setup.encode(text, add_special_tokens=False)) | |
tokens = tokenizer_setup.tokenize(text_target) | |
chunks = [] | |
current_chunk_tokens = [] | |
current_length = 0 | |
for token in tokens: | |
current_chunk_tokens.append(token) | |
current_length +=1 # Κατ' εκτίμηση, ένα token του tokenizer | |
if current_length >= CHUNK_SIZE - CHUNK_OVERLAP: # Αφήνουμε χώρο για overlap | |
# Βρες σημείο για overlap | |
overlap_point = max(0, len(current_chunk_tokens) - CHUNK_OVERLAP) | |
chunk_to_add_tokens = current_chunk_tokens[:overlap_point + (CHUNK_SIZE - CHUNK_OVERLAP)] | |
decoded_chunk = tokenizer_setup.convert_tokens_to_string(chunk_to_add_tokens).strip() | |
if decoded_chunk: chunks.append(decoded_chunk) | |
current_chunk_tokens = current_chunk_tokens[overlap_point:] | |
current_length = len(current_chunk_tokens) | |
if current_chunk_tokens: # Προσθήκη του τελευταίου chunk | |
decoded_chunk = tokenizer_setup.convert_tokens_to_string(current_chunk_tokens).strip() | |
if decoded_chunk: chunks.append(decoded_chunk) | |
return chunks if chunks else [text] | |
def _extract_embeddings_setup(texts, tokenizer_setup, model_setup, bs=BATCH_EMB): | |
out_embeddings = [] | |
model_setup.eval() # Βεβαιωθείτε ότι το μοντέλο είναι σε eval mode | |
for i in tq.tqdm(range(0, len(texts), bs), desc="Embedding texts for DB setup (Llama)"): | |
batch_texts = texts[i:i+bs] | |
# Για Llama, το padding_side μπορεί να είναι σημαντικό. Συνήθως 'left' για generation, 'right' για classification/embeddings. | |
# Ελέγξτε την τεκμηρίωση του ilsp/Llama-Krikri-8B-Base αν έχει συγκεκριμένες απαιτήσεις. | |
# tokenizer_setup.padding_side = "right" # Ορισμένα Llama fine-tunes το προτιμούν | |
enc = tokenizer_setup(batch_texts, padding=True, truncation=True, max_length=CHUNK_SIZE, return_tensors="pt") | |
# Μετακίνηση των inputs στη συσκευή όπου βρίσκεται το πρώτο layer του μοντέλου (λόγω device_map) | |
# Αυτό γίνεται αυτόματα από το accelerate αν τα inputs είναι στο CPU. | |
# enc = {k: v.to(model_setup.device) for k,v in enc.items()} # Δεν χρειάζεται συνήθως με device_map | |
with torch.no_grad(): | |
model_output = model_setup(**enc, output_hidden_states=True) # Βεβαιωθείτε ότι παίρνετε hidden_states | |
last_hidden_state = model_output.hidden_states[-1] # Για Llama, παίρνουμε το τελευταίο hidden state | |
# Στρατηγική: Embedding του τελευταίου token | |
# Πρέπει να βρούμε το index του τελευταίου *πραγματικού* token, όχι padding token. | |
# Αν το tokenizer κάνει right padding (default για πολλούς Llama tokenizers): | |
if tokenizer_setup.padding_side == "right": | |
sequence_lengths = enc['attention_mask'].sum(dim=1) - 1 | |
pooled_embeddings = last_hidden_state[torch.arange(last_hidden_state.size(0), device=last_hidden_state.device), sequence_lengths] | |
else: # Αν κάνει left padding, το τελευταίο token είναι πάντα στο -1 (αν δεν υπάρχει truncation που αφαιρεί το EOS) | |
pooled_embeddings = last_hidden_state[:, -1, :] | |
# Εναλλακτικά, mean pooling (πιο στιβαρό αν δεν είστε σίγουροι για το padding ή το last token) | |
# attention_mask = enc['attention_mask'] | |
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float() | |
# sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1) | |
# sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
# pooled_embeddings = sum_embeddings / sum_mask | |
normalized_embeddings = torch.nn.functional.normalize(pooled_embeddings, p=2, dim=1) | |
out_embeddings.append(normalized_embeddings.cpu()) | |
return torch.cat(out_embeddings).numpy() | |
print(f"⏳ (Setup) Loading Model ({MODEL_NAME}) and Tokenizer for ChatbotVol109...") | |
# Για Llama, μπορεί να χρειαστεί trust_remote_code=True | |
# Και device_map="auto" για μεγάλα μοντέλα | |
tokenizer_setup = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
# Βεβαιωθείτε ότι το padding token έχει οριστεί αν δεν υπάρχει. | |
if tokenizer_setup.pad_token is None: | |
tokenizer_setup.pad_token = tokenizer_setup.eos_token # Συνηθισμένο για Llama | |
print("Warning: pad_token was not set. Using eos_token as pad_token.") | |
# Φόρτωση μοντέλου με device_map="auto" για διαχείριση μνήμης. | |
# Εξετάστε την προσθήκη load_in_8bit=True ή load_in_4bit=True αν η μνήμη είναι πρόβλημα (απαιτεί bitsandbytes) | |
model_setup = AutoModel.from_pretrained( | |
MODEL_NAME, | |
trust_remote_code=True, | |
device_map="auto", | |
# torch_dtype=torch.float16 # Εξετάστε για μείωση μνήμης, αν υποστηρίζεται | |
) | |
print("✓ (Setup) Model and Tokenizer loaded for ChatbotVol109.") | |
print(f"⏳ (Setup) Reading & chunking JSON data from {DATA_PATH_FOR_SETUP}...") | |
if not Path(DATA_PATH_FOR_SETUP).exists(): | |
print(f"!!! CRITICAL SETUP ERROR: Dataset file {DATA_PATH_FOR_SETUP} not found! Please upload it.") | |
return False | |
with open(DATA_PATH_FOR_SETUP, encoding="utf-8") as f: docs_json = json.load(f) | |
raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup = [], [], [], [] | |
for d_setup in tq.tqdm(docs_json, desc="(Setup) Processing documents"): | |
doc_text = d_setup.get("text") | |
if not doc_text: continue | |
chunked_doc_texts = _chunk_text_setup(doc_text, tokenizer_setup) | |
if not chunked_doc_texts: continue | |
for idx, chunk in enumerate(chunked_doc_texts): | |
if not chunk.strip(): continue | |
raw_chunks_setup.append(chunk) | |
pre_chunks_setup.append(_preprocess_setup(chunk)) # Το preprocess παραμένει ίδιο | |
metas_setup.append({"id": d_setup["id"], "title": d_setup["title"], "url": d_setup["url"], "chunk_num": idx+1, "total_chunks": len(chunked_doc_texts)}) | |
ids_list_setup.append(f'{d_setup["id"]}_c{idx+1}') | |
print(f" → (Setup) Total chunks created: {len(raw_chunks_setup):,}") | |
if not raw_chunks_setup: | |
print("!!! CRITICAL SETUP ERROR: No chunks were created from the dataset.") | |
return False | |
print("⏳ (Setup) Building lexical matrices (TF-IDF)...") # Αυτό παραμένει ίδιο | |
char_vec_setup = HashingVectorizer(analyzer="char_wb", ngram_range=(2,5), n_features=2**20, norm=None, alternate_sign=False, binary=True) | |
word_vec_setup = HashingVectorizer(analyzer="word", ngram_range=(1,2), n_features=2**19, norm=None, alternate_sign=False, binary=True) | |
X_char_setup = sk_normalize(char_vec_setup.fit_transform(pre_chunks_setup)) | |
X_word_setup = sk_normalize(word_vec_setup.fit_transform(pre_chunks_setup)) | |
print("✓ (Setup) Lexical matrices built.") | |
print(f"⏳ (Setup) Setting up ChromaDB client at {DB_DIR_APP}...") | |
client_setup = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve())) | |
print(f" → (Setup) Creating collection: {COL_NAME}") | |
try: | |
client_setup.delete_collection(COL_NAME) | |
print(f" ℹ️ (Setup) Deleted existing collection '{COL_NAME}' to ensure fresh setup.") | |
except Exception as e_del_col: | |
print(f" ℹ️ (Setup) Collection '{COL_NAME}' not found or could not be deleted (normal if first run): {e_del_col}") | |
pass | |
col_setup = client_setup.get_or_create_collection(COL_NAME, metadata={"hnsw:space":"cosine"}) | |
print("⏳ (Setup) Encoding chunks with Llama and streaming to ChromaDB...") | |
# Η _cls_embed_setup έχει μετονομαστεί σε _extract_embeddings_setup και προσαρμοστεί | |
all_embeddings = _extract_embeddings_setup(pre_chunks_setup, tokenizer_setup, model_setup, bs=BATCH_EMB) | |
# Προσθήκη σε batches στη ChromaDB | |
for start_idx in tq.tqdm(range(0, len(pre_chunks_setup), BATCH_EMB*10), desc="(Setup) Adding to ChromaDB"): # Μεγαλύτερο batch για add | |
end_idx = min(start_idx + BATCH_EMB*10, len(pre_chunks_setup)) | |
batch_ids = ids_list_setup[start_idx:end_idx] | |
batch_metadatas = metas_setup[start_idx:end_idx] | |
batch_documents = pre_chunks_setup[start_idx:end_idx] # Αποθηκεύουμε τα preprocessed για συνέπεια | |
batch_embeddings_to_add = all_embeddings[start_idx:end_idx] | |
if not batch_ids: continue | |
col_setup.add(embeddings=batch_embeddings_to_add.tolist(), documents=batch_documents, metadatas=batch_metadatas, ids=batch_ids) | |
final_count = col_setup.count() | |
print(f"✓ (Setup) Index built and stored in ChromaDB for ChatbotVol109. Final count: {final_count}") | |
if final_count != len(ids_list_setup): | |
print(f"!!! WARNING (Setup): Mismatch after setup! Expected {len(ids_list_setup)} items, got {final_count}") | |
print(f"💾 (Setup) Saving assets to {ASSETS_DIR_APP}...") | |
joblib.dump(char_vec_setup, ASSETS_DIR_APP / "char_vectorizer.joblib") | |
joblib.dump(word_vec_setup, ASSETS_DIR_APP / "word_vectorizer.joblib") | |
scipy.sparse.save_npz(ASSETS_DIR_APP / "X_char_sparse.npz", X_char_setup) | |
scipy.sparse.save_npz(ASSETS_DIR_APP / "X_word_sparse.npz", X_word_setup) | |
with open(ASSETS_DIR_APP / "pre_chunks.pkl", "wb") as f: pickle.dump(pre_chunks_setup, f) | |
with open(ASSETS_DIR_APP / "raw_chunks.pkl", "wb") as f: pickle.dump(raw_chunks_setup, f) | |
with open(ASSETS_DIR_APP / "ids.pkl", "wb") as f: pickle.dump(ids_list_setup, f) | |
with open(ASSETS_DIR_APP / "metas.pkl", "wb") as f: pickle.dump(metas_setup, f) | |
print("✓ (Setup) Assets saved for ChatbotVol109.") | |
del tokenizer_setup, model_setup, docs_json, raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup, all_embeddings | |
del char_vec_setup, word_vec_setup, X_char_setup, X_word_setup, client_setup, col_setup | |
if DEVICE == "cuda": # Το device_map="auto" χειρίζεται τη μνήμη, αλλά ένα γενικό clear cache μπορεί να βοηθήσει | |
torch.cuda.empty_cache() | |
print("🎉 (Setup) Database and assets creation process for ChatbotVol109 complete!") | |
return True | |
# ================================================================== | |
setup_successful = setup_database_and_assets() | |
# ----------------------- PRE-/POST HELPERS (για την εφαρμογή Gradio) ---------------------------- | |
def strip_acc(s: str) -> str: | |
return ''.join(ch for ch in unicodedata.normalize('NFD', s) if not unicodedata.combining(ch)) | |
STOP = {"σχετικο", "σχετικα", "με", "και"} | |
def preprocess(txt: str) -> str: | |
txt = strip_acc(txt.lower()) | |
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt) | |
txt = re.sub(r"\s+", " ", txt).strip() | |
return " ".join(w for w in txt.split() if w not in STOP) | |
# extract_embeddings για την εφαρμογή Gradio (ένα query κάθε φορά) | |
def extract_embeddings_app(texts, tokenizer_app, model_app): | |
model_app.eval() | |
# tokenizer_app.padding_side = "right" # Αν χρειάζεται | |
enc = tokenizer_app(texts, padding=True, truncation=True, max_length=CHUNK_SIZE, return_tensors="pt") | |
# enc = {k: v.to(model_app.device) for k,v in enc.items()} # Δεν χρειάζεται με device_map | |
with torch.no_grad(): | |
model_output = model_app(**enc, output_hidden_states=True) | |
last_hidden_state = model_output.hidden_states[-1] | |
if tokenizer_app.padding_side == "right": | |
sequence_lengths = enc['attention_mask'].sum(dim=1) - 1 | |
pooled_embeddings = last_hidden_state[torch.arange(last_hidden_state.size(0), device=last_hidden_state.device), sequence_lengths] | |
else: | |
pooled_embeddings = last_hidden_state[:, -1, :] | |
normalized_embeddings = torch.nn.functional.normalize(pooled_embeddings, p=2, dim=1) | |
return normalized_embeddings.cpu().numpy() | |
# ---------------------- LOAD MODELS & DATA (Για την εφαρμογή Gradio) -------------------- | |
tok = None | |
model = None | |
char_vec = None | |
word_vec = None | |
X_char = None | |
X_word = None | |
pre_chunks = None | |
raw_chunks = None | |
ids = None | |
metas = None | |
col = None | |
if setup_successful: | |
print(f"⏳ Loading Model ({MODEL_NAME}) and Tokenizer for Gradio App (ChatbotVol109)...") | |
try: | |
tok = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
if tok.pad_token is None: | |
tok.pad_token = tok.eos_token | |
# tok.padding_side = "right" # Ορίστε το padding side αν είναι απαραίτητο για συνέπεια | |
model = AutoModel.from_pretrained( | |
MODEL_NAME, | |
trust_remote_code=True, | |
device_map="auto", | |
# torch_dtype=torch.float16 | |
) | |
print("✓ Model and tokenizer loaded for Gradio App (ChatbotVol109).") | |
except Exception as e: | |
print(f"CRITICAL ERROR loading model/tokenizer for Gradio App (ChatbotVol109): {e}") | |
setup_successful = False | |
if setup_successful: | |
print(f"⏳ Loading TF-IDF/Assets from {ASSETS_DIR_APP} for Gradio App...") | |
try: | |
char_vec = joblib.load(ASSETS_DIR_APP / "char_vectorizer.joblib") | |
word_vec = joblib.load(ASSETS_DIR_APP / "word_vectorizer.joblib") | |
X_char = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_char_sparse.npz") | |
X_word = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_word_sparse.npz") | |
with open(ASSETS_DIR_APP / "pre_chunks.pkl", "rb") as f: pre_chunks = pickle.load(f) | |
with open(ASSETS_DIR_APP / "raw_chunks.pkl", "rb") as f: raw_chunks = pickle.load(f) | |
with open(ASSETS_DIR_APP / "ids.pkl", "rb") as f: ids = pickle.load(f) | |
with open(ASSETS_DIR_APP / "metas.pkl", "rb") as f: metas = pickle.load(f) | |
print("✓ TF-IDF/Assets loaded for Gradio App (ChatbotVol109).") | |
except Exception as e: | |
print(f"CRITICAL ERROR loading TF-IDF/Assets for Gradio App (ChatbotVol109): {e}") | |
setup_successful = False | |
if setup_successful: | |
print(f"⏳ Connecting to ChromaDB at {DB_DIR_APP} for Gradio App...") | |
try: | |
client = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve())) | |
col = client.get_collection(COL_NAME) | |
print(f"✓ Connected to ChromaDB. Collection '{COL_NAME}' count: {col.count()}") | |
if col.count() == 0 and (ids and len(ids) > 0): | |
print(f"!!! CRITICAL WARNING: ChromaDB collection '{COL_NAME}' is EMPTY but assets were loaded. Setup might have failed.") | |
setup_successful = False | |
except Exception as e: | |
print(f"CRITICAL ERROR connecting to ChromaDB or getting collection for Gradio App (ChatbotVol109): {e}") | |
setup_successful = False | |
else: | |
print("!!! Setup process for ChatbotVol109 failed or was skipped. Gradio app will not function correctly. !!!") | |
# ---------------------- HYBRID SEARCH (Κύρια Λογική) --- | |
def hybrid_search_gradio(query, k=5): | |
if not setup_successful or not ids or not col or not model or not tok: | |
return "Σφάλμα: Η εφαρμογή δεν αρχικοποιήθηκε σωστά (ChatbotVol109). Ελέγξτε τα logs." | |
if not query.strip(): | |
return "Παρακαλώ εισάγετε μια ερώτηση." | |
q_pre = preprocess(query) | |
words = q_pre.split() | |
alpha = ALPHA_LONGQ if len(words) > 30 else ALPHA_BASE # Το alpha μπορεί να χρειαστεί re-tuning | |
# Σημασιολογική Αναζήτηση με το νέο μοντέλο | |
q_emb_np = extract_embeddings_app([q_pre], tok, model) # Χρήση της νέας συνάρτησης | |
q_emb_list = q_emb_np.tolist() | |
try: | |
sem_results = col.query(query_embeddings=q_emb_list, n_results=min(150, len(ids)), include=["distances"]) | |
except Exception as e: | |
print(f"ERROR during ChromaDB query in hybrid_search_gradio (ChatbotVol109): {type(e).__name__}: {e}") | |
return "Σφάλμα κατά την σημασιολογική αναζήτηση. Επικοινωνήστε με τον διαχειριστή." | |
sem_sims = {doc_id: 1 - dist for doc_id, dist in zip(sem_results["ids"][0], sem_results["distances"][0])} | |
# Λεξική Αναζήτηση (παραμένει ίδια η λογική) | |
q_char_sparse = char_vec.transform([q_pre]) | |
q_char_normalized = sk_normalize(q_char_sparse) | |
char_sim_scores = (q_char_normalized @ X_char.T).toarray().flatten() | |
q_word_sparse = word_vec.transform([q_pre]) | |
q_word_normalized = sk_normalize(q_word_sparse) | |
word_sim_scores = (q_word_normalized @ X_word.T).toarray().flatten() | |
lex_sims = {} | |
for idx, (c_score, w_score) in enumerate(zip(char_sim_scores, word_sim_scores)): | |
if c_score > 0 or w_score > 0: | |
if idx < len(ids): lex_sims[ids[idx]] = 0.85 * c_score + 0.15 * w_score | |
else: print(f"Warning (hybrid_search): Lexical score index {idx} out of bounds for ids list (len: {len(ids)}).") | |
exact_ids_set = {ids[i] for i, t in enumerate(pre_chunks) if q_pre in t} # Exact match παραμένει | |
# Υβριδικό Score (παραμένει η λογική) | |
all_chunk_ids_set = set(sem_sims.keys()) | set(lex_sims.keys()) | exact_ids_set | |
scored = [] | |
for chunk_id_key in all_chunk_ids_set: | |
s = alpha * sem_sims.get(chunk_id_key, 0.0) + (1 - alpha) * lex_sims.get(chunk_id_key, 0.0) | |
if chunk_id_key in exact_ids_set: s = 1.0 # Boost για exact match | |
scored.append((chunk_id_key, s)) | |
scored.sort(key=lambda x: x[1], reverse=True) | |
# Μορφοποίηση Εξόδου (παραμένει η λογική, αλλά τα snippets θα είναι από τα raw_chunks) | |
hits_output = [] | |
seen_doc_main_ids = set() | |
for chunk_id_val, score_val in scored: | |
try: idx_in_lists = ids.index(chunk_id_val) | |
except ValueError: | |
print(f"Warning (hybrid_search): chunk_id '{chunk_id_val}' not found in loaded ids. Skipping.") | |
continue | |
doc_meta = metas[idx_in_lists] | |
doc_main_id = doc_meta['id'] | |
if doc_main_id in seen_doc_main_ids: continue # Ένα αποτέλεσμα ανά κύριο έγγραφο | |
original_url_from_meta = doc_meta.get('url', '#') | |
pdf_gcs_url = "#" | |
pdf_filename_display = "N/A" | |
if original_url_from_meta and original_url_from_meta != '#': | |
pdf_filename_extracted = os.path.basename(original_url_from_meta) | |
if pdf_filename_extracted and pdf_filename_extracted.lower().endswith(".pdf"): | |
pdf_gcs_url = f"{GCS_PUBLIC_URL_PREFIX}{pdf_filename_extracted}" | |
pdf_filename_display = pdf_filename_extracted | |
elif pdf_filename_extracted: pdf_filename_display = "Source is not a PDF" | |
hits_output.append({ | |
"score": score_val, "title": doc_meta.get('title', 'N/A'), | |
"snippet": raw_chunks[idx_in_lists][:700] + " ...", # Αυξήθηκε λίγο το snippet | |
"original_url_meta": original_url_from_meta, "pdf_serve_url": pdf_gcs_url, | |
"pdf_filename_display": pdf_filename_display | |
}) | |
seen_doc_main_ids.add(doc_main_id) | |
if len(hits_output) >= k: break | |
if not hits_output: return "Δεν βρέθηκαν σχετικά αποτελέσματα." | |
# Δημιουργία Markdown εξόδου | |
model_short_name = MODEL_NAME.split('/')[-1].replace("Llama-Krikri-", "LK-") # Συντομογραφία | |
output_md = f"Βρέθηκαν **{len(hits_output)}** σχετικά αποτελέσματα (Μοντέλο: {model_short_name}):\n\n" | |
for hit in hits_output: | |
output_md += f"### {hit['title']} (Score: {hit['score']:.3f})\n" | |
snippet_wrapped = textwrap.fill(hit['snippet'].replace("\n", " "), width=100) | |
output_md += f"**Απόσπασμα:** {snippet_wrapped}\n" | |
if hit['pdf_serve_url'] and hit['pdf_serve_url'] != '#': | |
output_md += f"**Πηγή (PDF):** <a href='{hit['pdf_serve_url']}' target='_blank'>{hit['pdf_filename_display']}</a>\n" | |
elif hit['original_url_meta'] and hit['original_url_meta'] != '#': | |
output_md += f"**Πηγή (αρχικό από metadata):** [{hit['original_url_meta']}]({hit['original_url_meta']})\n" | |
else: | |
output_md += f"**Πηγή:** Δεν είναι διαθέσιμη\n" | |
output_md += "---\n" | |
return output_md | |
# ---------------------- GRADIO INTERFACE ----------------------------------- | |
print("🚀 Launching Gradio Interface for Krikri...") | |
model_display_name = MODEL_NAME.split('/')[-1].replace("Llama-Krikri-", "LK-") # Συντομογραφία για τον τίτλο | |
iface = gr.Interface( | |
fn=hybrid_search_gradio, | |
# --- START OF CHANGES --- | |
inputs=[ | |
gr.Textbox(lines=3, placeholder="Γράψε την ερώτησή σου εδώ...", label=f"Ερώτηση προς τον βοηθό (Μοντέλο: {model_display_name}):"), | |
gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Αριθμός Αποτελεσμάτων") | |
], | |
# --- END OF CHANGES --- | |
outputs=gr.Markdown(label="Απαντήσεις από τα έγγραφα:", rtl=False, sanitize_html=False), # sanitize_html=False επιτρέπει το link | |
title=f"🏛️ Ελληνικό Chatbot Υβριδικής Αναζήτησης (Krikri - {model_display_name})", | |
description=(f"Πληκτρολογήστε την ερώτησή σας για αναζήτηση. Χρησιμοποιεί το μοντέλο: {MODEL_NAME}.\n" | |
"Τα PDF ανοίγουν από Google Cloud Storage σε νέα καρτέλα."), | |
allow_flagging="never", | |
# --- The examples format now matches the new inputs list (query, k) --- | |
examples=[ | |
["Τεχνολογίας τροφίμων;", 5], | |
["Αμπελουργίας και της οινολογίας", 3], | |
["Ποιες θέσεις αφορούν διδάσκοντες μερικής απασχόλησης στο Τμήμα Νοσηλευτικής του Πανεπιστημίου Ιωαννίνων;", 5] | |
], | |
) | |
if __name__ == '__main__': | |
iface.launch() |