Spaces:
Paused
Paused
Delete app.py
Browse files
app.py
DELETED
@@ -1,292 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import unicodedata
|
4 |
-
import re
|
5 |
-
import numpy as np
|
6 |
-
from pathlib import Path
|
7 |
-
from transformers import AutoTokenizer, AutoModel
|
8 |
-
from sklearn.feature_extraction.text import HashingVectorizer
|
9 |
-
from sklearn.preprocessing import normalize as sk_normalize
|
10 |
-
import chromadb
|
11 |
-
import joblib
|
12 |
-
import pickle
|
13 |
-
import scipy.sparse
|
14 |
-
import textwrap
|
15 |
-
import os
|
16 |
-
|
17 |
-
# --------------------------- CONFIG -----------------------------------
|
18 |
-
DB_DIR = Path("./chroma_db_greekbertChatbotVol106")
|
19 |
-
ASSETS_DIR = Path("./assets")
|
20 |
-
STATIC_PDF_DIR = Path("./static_pdfs")
|
21 |
-
STATIC_PDF_DIR_NAME = "static_pdfs"
|
22 |
-
|
23 |
-
COL_NAME = "dataset14_grbert_charword"
|
24 |
-
MODEL_NAME = "sentence-transformers/paraphrase-xlm-r-multilingual-v1"
|
25 |
-
CHUNK_SIZE = 512
|
26 |
-
ALPHA_BASE = 0.2
|
27 |
-
ALPHA_LONGQ = 0.5
|
28 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
-
|
30 |
-
print(f"Running on device: {DEVICE}")
|
31 |
-
|
32 |
-
# ----------------------- PRE-/POST HELPERS ----------------------------
|
33 |
-
def strip_acc(s: str) -> str:
|
34 |
-
return ''.join(ch for ch in unicodedata.normalize('NFD', s)
|
35 |
-
if not unicodedata.combining(ch))
|
36 |
-
|
37 |
-
STOP = {"σχετικο", "σχετικα", "με", "και"}
|
38 |
-
|
39 |
-
def preprocess(txt: str) -> str:
|
40 |
-
txt = strip_acc(txt.lower())
|
41 |
-
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
|
42 |
-
txt = re.sub(r"\s+", " ", txt).strip()
|
43 |
-
return " ".join(w for w in txt.split() if w not in STOP)
|
44 |
-
|
45 |
-
def cls_embed(texts, tok, model):
|
46 |
-
out = []
|
47 |
-
enc = tok(texts, padding=True, truncation=True,
|
48 |
-
max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
|
49 |
-
with torch.no_grad():
|
50 |
-
hs = model(**enc, output_hidden_states=True).hidden_states
|
51 |
-
cls = torch.stack(hs[-4:],0).mean(0)[:,0,:]
|
52 |
-
cls = torch.nn.functional.normalize(cls, p=2, dim=1)
|
53 |
-
out.append(cls.cpu())
|
54 |
-
return torch.cat(out).numpy()
|
55 |
-
|
56 |
-
# ---------------------- LOAD MODELS & DATA (Μία φορά κατά την εκκίνηση) --------------------
|
57 |
-
print("⏳ Loading Model and Tokenizer...")
|
58 |
-
try:
|
59 |
-
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
|
60 |
-
model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
|
61 |
-
print("✓ Model and tokenizer loaded.")
|
62 |
-
except Exception as e:
|
63 |
-
print(f"CRITICAL ERROR loading model/tokenizer: {e}")
|
64 |
-
raise
|
65 |
-
|
66 |
-
print("⏳ Loading TF-IDF vectorizers and SPARSE matrices...")
|
67 |
-
try:
|
68 |
-
char_vec = joblib.load(ASSETS_DIR / "char_vectorizer.joblib")
|
69 |
-
word_vec = joblib.load(ASSETS_DIR / "word_vectorizer.joblib")
|
70 |
-
X_char = scipy.sparse.load_npz(ASSETS_DIR / "X_char_sparse.npz")
|
71 |
-
X_word = scipy.sparse.load_npz(ASSETS_DIR / "X_word_sparse.npz")
|
72 |
-
print("✓ TF-IDF components loaded (sparse matrices).")
|
73 |
-
print(f" → X_char shape: {X_char.shape}, type: {type(X_char)}")
|
74 |
-
print(f" → X_word shape: {X_word.shape}, type: {type(X_word)}")
|
75 |
-
except Exception as e:
|
76 |
-
print(f"CRITICAL ERROR loading TF-IDF components: {e}")
|
77 |
-
raise
|
78 |
-
|
79 |
-
print("⏳ Loading chunk data (pre_chunks, raw_chunks, ids, metas)...")
|
80 |
-
try:
|
81 |
-
with open(ASSETS_DIR / "pre_chunks.pkl", "rb") as f:
|
82 |
-
pre_chunks = pickle.load(f)
|
83 |
-
with open(ASSETS_DIR / "raw_chunks.pkl", "rb") as f:
|
84 |
-
raw_chunks = pickle.load(f)
|
85 |
-
with open(ASSETS_DIR / "ids.pkl", "rb") as f:
|
86 |
-
ids = pickle.load(f)
|
87 |
-
with open(ASSETS_DIR / "metas.pkl", "rb") as f:
|
88 |
-
metas = pickle.load(f)
|
89 |
-
print(f"✓ Chunk data loaded. Total chunks from ids: {len(ids):,}")
|
90 |
-
if not all([pre_chunks, raw_chunks, ids, metas]):
|
91 |
-
print("WARNING: One or more chunk data lists are empty!")
|
92 |
-
except Exception as e:
|
93 |
-
print(f"CRITICAL ERROR loading chunk data: {e}")
|
94 |
-
raise
|
95 |
-
|
96 |
-
print("⏳ Connecting to ChromaDB...")
|
97 |
-
try:
|
98 |
-
client = chromadb.PersistentClient(path=str(DB_DIR.resolve()))
|
99 |
-
col = client.get_collection(COL_NAME)
|
100 |
-
print(f"✓ Connected to ChromaDB. Collection '{COL_NAME}' count: {col.count()}")
|
101 |
-
if col.count() == 0:
|
102 |
-
print("WARNING: ChromaDB collection is empty or not found correctly!")
|
103 |
-
except Exception as e:
|
104 |
-
print(f"CRITICAL ERROR connecting to ChromaDB or getting collection: {e}")
|
105 |
-
print(f"Attempted DB path for PersistentClient: {str(DB_DIR.resolve())}")
|
106 |
-
print("Ensure the ChromaDB directory structure is correct in your Hugging Face Space repository.")
|
107 |
-
raise
|
108 |
-
|
109 |
-
# ---------------------- HYBRID SEARCH (Κύρια Λογική) ---------------------------------
|
110 |
-
def hybrid_search_gradio(query, k=5):
|
111 |
-
if not query.strip():
|
112 |
-
return "Παρακαλώ εισάγετε μια ερώτηση."
|
113 |
-
|
114 |
-
if not ids:
|
115 |
-
return "Σφάλμα: Τα δεδομένα αναζήτησης (ids) δεν έχουν φορτωθεί. Επικοινωνήστε με τον διαχειριστή."
|
116 |
-
|
117 |
-
q_pre = preprocess(query)
|
118 |
-
words = q_pre.split()
|
119 |
-
alpha = ALPHA_LONGQ if len(words) > 30 else ALPHA_BASE
|
120 |
-
|
121 |
-
exact_ids_set = {ids[i] for i, t in enumerate(pre_chunks) if q_pre in t}
|
122 |
-
|
123 |
-
q_emb_np = cls_embed([q_pre], tok, model)
|
124 |
-
q_emb_list = q_emb_np.tolist()
|
125 |
-
|
126 |
-
try:
|
127 |
-
sem_results = col.query(
|
128 |
-
query_embeddings=q_emb_list,
|
129 |
-
n_results=min(k * 30, len(ids)),
|
130 |
-
include=["distances", "metadatas", "documents"]
|
131 |
-
)
|
132 |
-
except Exception as e:
|
133 |
-
print(f"ERROR during ChromaDB query: {e}")
|
134 |
-
return "Σφάλμα κατά την σημασιολογική αναζήτηση."
|
135 |
-
|
136 |
-
sem_sims = {doc_id: 1 - dist for doc_id, dist in zip(sem_results["ids"][0], sem_results["distances"][0])}
|
137 |
-
|
138 |
-
q_char_sparse = char_vec.transform([q_pre])
|
139 |
-
q_char_normalized = sk_normalize(q_char_sparse)
|
140 |
-
char_sim_scores = (q_char_normalized @ X_char.T).toarray().flatten()
|
141 |
-
|
142 |
-
q_word_sparse = word_vec.transform([q_pre])
|
143 |
-
q_word_normalized = sk_normalize(q_word_sparse)
|
144 |
-
word_sim_scores = (q_word_normalized @ X_word.T).toarray().flatten()
|
145 |
-
|
146 |
-
lex_sims = {}
|
147 |
-
for idx, (c_score, w_score) in enumerate(zip(char_sim_scores, word_sim_scores)):
|
148 |
-
if c_score > 0 or w_score > 0:
|
149 |
-
if idx < len(ids):
|
150 |
-
lex_sims[ids[idx]] = 0.85 * c_score + 0.15 * w_score
|
151 |
-
else:
|
152 |
-
print(f"Warning: Lexical score index {idx} out of bounds for ids list (len: {len(ids)}).")
|
153 |
-
|
154 |
-
all_chunk_ids_set = set(sem_sims.keys()) | set(lex_sims.keys()) | exact_ids_set
|
155 |
-
scored = []
|
156 |
-
for chunk_id_key in all_chunk_ids_set:
|
157 |
-
s = alpha * sem_sims.get(chunk_id_key, 0.0) + \
|
158 |
-
(1 - alpha) * lex_sims.get(chunk_id_key, 0.0)
|
159 |
-
if chunk_id_key in exact_ids_set:
|
160 |
-
s = 1.0
|
161 |
-
scored.append((chunk_id_key, s))
|
162 |
-
|
163 |
-
scored.sort(key=lambda x: x[1], reverse=True)
|
164 |
-
|
165 |
-
hits_output = []
|
166 |
-
seen_doc_main_ids = set()
|
167 |
-
for chunk_id_val, score_val in scored:
|
168 |
-
try:
|
169 |
-
idx_in_lists = ids.index(chunk_id_val)
|
170 |
-
except ValueError:
|
171 |
-
print(f"Warning: chunk_id '{chunk_id_val}' from search results not found in global 'ids' list. Skipping.")
|
172 |
-
continue
|
173 |
-
|
174 |
-
doc_meta = metas[idx_in_lists]
|
175 |
-
doc_main_id = doc_meta['id']
|
176 |
-
|
177 |
-
if doc_main_id in seen_doc_main_ids:
|
178 |
-
continue
|
179 |
-
|
180 |
-
original_url_from_meta = doc_meta.get('url', '#')
|
181 |
-
|
182 |
-
# *** ΕΝΑΡΞΗ ΤΡΟΠΟΠΟΙΗΜΕΝΟΥ/ΝΕΟΥ ΚΩΔΙΚΑ ΓΙΑ PDF DEBUGGING ***
|
183 |
-
pdf_serve_url = "#"
|
184 |
-
pdf_filename_display = "N/A"
|
185 |
-
pdf_filename_extracted = None # Αρχικοποίηση
|
186 |
-
|
187 |
-
if original_url_from_meta and original_url_from_meta != '#':
|
188 |
-
pdf_filename_extracted = os.path.basename(original_url_from_meta)
|
189 |
-
print(f"--- Debug: Original URL: {original_url_from_meta}, Initial Extracted filename: {pdf_filename_extracted}")
|
190 |
-
|
191 |
-
# --- ΠΡΟΣΩΡΙΝΟΣ ΚΩΔΙΚΑΣ ΓΙΑ ΔΟΚΙΜΗ ASCII FILENAME (Μπορείτε να τον ενεργοποιήσετε αφαιρώντας τα σχόλια) ---
|
192 |
-
# TARGET_ORIGINAL_FILENAME_FOR_TEST = "6ΑΤΘ469Β7Η-963.pdf" # Το αρχικό ελληνικό όνομα που είχατε μετονομάσει
|
193 |
-
# ASCII_TEST_FILENAME = "testfileGR.pdf" # Το νέο ASCII όνομα που βάλατε στο static_pdfs
|
194 |
-
#
|
195 |
-
# if pdf_filename_extracted == TARGET_ORIGINAL_FILENAME_FOR_TEST:
|
196 |
-
# print(f"--- INFO: ASCII Filename Test Active ---")
|
197 |
-
# print(f"--- Original filename was: {pdf_filename_extracted}")
|
198 |
-
# print(f"--- Temporarily using: {ASCII_TEST_FILENAME} for linking and checking existence.")
|
199 |
-
# pdf_filename_extracted = ASCII_TEST_FILENAME
|
200 |
-
# --- ΤΕΛΟΣ ΠΡΟΣΩΡΙΝΟΥ ΚΩΔΙΚΑ ASCII ---
|
201 |
-
|
202 |
-
if pdf_filename_extracted and pdf_filename_extracted.lower().endswith(".pdf"):
|
203 |
-
potential_pdf_path_on_server = STATIC_PDF_DIR / pdf_filename_extracted
|
204 |
-
|
205 |
-
print(f"--- Debug: Final pdf_filename_extracted to check: {pdf_filename_extracted}")
|
206 |
-
print(f"--- Debug: Checking for PDF at server path: {potential_pdf_path_on_server.resolve()}")
|
207 |
-
|
208 |
-
if potential_pdf_path_on_server.exists() and potential_pdf_path_on_server.is_file():
|
209 |
-
print(f"--- Debug: Path.exists() and Path.is_file() are TRUE for {potential_pdf_path_on_server.resolve()}. Attempting to open...")
|
210 |
-
try:
|
211 |
-
# Προσπάθεια ανοίγματος του αρχείου σε binary read mode και ανάγνωσης ενός byte
|
212 |
-
with open(potential_pdf_path_on_server, "rb") as f_test_access:
|
213 |
-
f_test_access.read(1)
|
214 |
-
print(f"--- Debug: Successfully opened and read a byte from: {potential_pdf_path_on_server.resolve()}")
|
215 |
-
|
216 |
-
pdf_serve_url = f"/file/{STATIC_PDF_DIR_NAME}/{pdf_filename_extracted}"
|
217 |
-
pdf_filename_display = pdf_filename_extracted
|
218 |
-
|
219 |
-
except Exception as e_file_access:
|
220 |
-
print(f"!!! CRITICAL ERROR trying to open/read file {potential_pdf_path_on_server.resolve()}: {e_file_access}")
|
221 |
-
pdf_filename_display = "Error accessing file content" # Ενημέρωση για εμφάνιση
|
222 |
-
else:
|
223 |
-
print(f"--- Debug: Path.exists() or Path.is_file() is FALSE for {potential_pdf_path_on_server.resolve()}")
|
224 |
-
pdf_filename_display = "File not found by script"
|
225 |
-
else:
|
226 |
-
if not pdf_filename_extracted: # Αν το pdf_filename_extracted κατέληξε κενό
|
227 |
-
print(f"--- Debug: pdf_filename_extracted is empty or None after os.path.basename or ASCII test.")
|
228 |
-
else: # Αν δεν έχει επέκταση .pdf
|
229 |
-
print(f"--- Debug: Extracted filename '{pdf_filename_extracted}' does not end with .pdf")
|
230 |
-
pdf_filename_display = "Not a valid PDF link"
|
231 |
-
else: # original_url_from_meta ήταν κενό ή '#'
|
232 |
-
print(f"--- Debug: No valid original_url_from_meta found. URL was: '{original_url_from_meta}'")
|
233 |
-
pdf_filename_display = "No source URL"
|
234 |
-
|
235 |
-
# *** ΤΕΛΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΟΥ/ΝΕΟΥ ΚΩΔΙΚΑ ΓΙΑ PDF DEBUGGING ***
|
236 |
-
|
237 |
-
hits_output.append({
|
238 |
-
"score": score_val,
|
239 |
-
"title": doc_meta.get('title', 'N/A'),
|
240 |
-
"snippet": raw_chunks[idx_in_lists][:500] + " ...",
|
241 |
-
"original_url_meta": original_url_from_meta,
|
242 |
-
"pdf_serve_url": pdf_serve_url,
|
243 |
-
"pdf_filename_display": pdf_filename_display
|
244 |
-
})
|
245 |
-
seen_doc_main_ids.add(doc_main_id)
|
246 |
-
if len(hits_output) >= k:
|
247 |
-
break
|
248 |
-
|
249 |
-
if not hits_output:
|
250 |
-
return "Δεν βρέθηκαν σχετικά αποτελέσματα."
|
251 |
-
|
252 |
-
output_md = f"Βρέθηκαν **{len(hits_output)}** σχετικά αποτελέσματα:\n\n"
|
253 |
-
for hit in hits_output:
|
254 |
-
output_md += f"### {hit['title']} (Score: {hit['score']:.3f})\n"
|
255 |
-
snippet_wrapped = textwrap.fill(hit['snippet'].replace("\n", " "), width=100)
|
256 |
-
output_md += f"**Απόσπασμα:** {snippet_wrapped}\n"
|
257 |
-
|
258 |
-
if hit['pdf_serve_url'] and hit['pdf_serve_url'] != '#':
|
259 |
-
output_md += f"**Πηγή (PDF):** <a href='{hit['pdf_serve_url']}' target='_blank'>{hit['pdf_filename_display']}</a>\n"
|
260 |
-
elif hit['original_url_meta'] and hit['original_url_meta'] != '#':
|
261 |
-
output_md += f"**Πηγή (αρχικό):** [{hit['original_url_meta']}]({hit['original_url_meta']})\n"
|
262 |
-
output_md += "---\n"
|
263 |
-
|
264 |
-
# ΠΡΟΣΩΡΙΝΗ ΠΡΟΣΘΗΚΗ ΓΙΑ ΔΟΚΙΜΗ TXT ΑΡΧΕΙΟΥ
|
265 |
-
# Βεβαιωθείτε ότι έχετε ανεβάσει το 'test_text_file.txt' στον φάκελο 'static_pdfs'.
|
266 |
-
# Αυτός ο σύνδεσμος θα εμφανιστεί στο κάτω μέρος των αποτελεσμάτων αναζήτησης.
|
267 |
-
output_md += "\n\n---\n**Δοκιμαστικός Σύνδεσμος Κειμένου:** <a href='/file/static_pdfs/test_text_file.txt' target='_blank'>Άνοιγμα test_text_file.txt</a>\n"
|
268 |
-
# Η ρύθμιση sanitize_html=False στο gr.Markdown που έχετε ήδη, επιτρέπει αυτή την HTML.
|
269 |
-
|
270 |
-
return output_md
|
271 |
-
|
272 |
-
|
273 |
-
# ---------------------- GRADIO INTERFACE -----------------------------------
|
274 |
-
print("🚀 Launching Gradio Interface...")
|
275 |
-
iface = gr.Interface(
|
276 |
-
fn=hybrid_search_gradio,
|
277 |
-
inputs=gr.Textbox(lines=3, placeholder="Γράψε την ερώτησή σου εδώ...", label="Ερώτηση προς τον βοηθό:"),
|
278 |
-
outputs=gr.Markdown(label="Απαντήσεις από τα έγγραφα:", rtl=False, sanitize_html=False),
|
279 |
-
title="🏛️ Ελληνικό Chatbot Υβριδικής Αναζήτησης (v1.0.9)", # Νέα έκδοση για παρακολούθηση
|
280 |
-
description="Πληκτρολογήστε την ερώτησή σας για αναζήτηση στα διαθέσιμα έγγραφα. Η αναζήτηση συνδυάζει σημασιολογική ομοιότητα (GreekBERT) και ομοιότητα λέξεων/χαρακτήρων (TF-IDF).\nΧρησιμοποιεί το μοντέλο: sentence-transformers/paraphrase-xlm-r-multilingual-v1.\nΤα PDF ανοίγουν σε νέα καρτέλα.",
|
281 |
-
allow_flagging="never",
|
282 |
-
examples=[
|
283 |
-
["Ποια είναι τα μέτρα για τον κορονοϊό;", 5],
|
284 |
-
["Πληροφορίες για άδεια ειδικού σκοπού", 3],
|
285 |
-
["Τι προβλέπεται για τις μετακινήσεις εκτός νομού;", 5]
|
286 |
-
],
|
287 |
-
)
|
288 |
-
|
289 |
-
if __name__ == '__main__':
|
290 |
-
# Παραλλαγή 2
|
291 |
-
# STATIC_PDF_DIR ορίζεται στην αρχή του αρχείου ως Path("./static_pdfs")
|
292 |
-
iface.launch(allowed_paths=[str(STATIC_PDF_DIR.resolve())])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|