TzepChris commited on
Commit
a075082
·
verified ·
1 Parent(s): f3e9575

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -292
app.py DELETED
@@ -1,292 +0,0 @@
1
- import gradio as gr
2
- import torch
3
- import unicodedata
4
- import re
5
- import numpy as np
6
- from pathlib import Path
7
- from transformers import AutoTokenizer, AutoModel
8
- from sklearn.feature_extraction.text import HashingVectorizer
9
- from sklearn.preprocessing import normalize as sk_normalize
10
- import chromadb
11
- import joblib
12
- import pickle
13
- import scipy.sparse
14
- import textwrap
15
- import os
16
-
17
- # --------------------------- CONFIG -----------------------------------
18
- DB_DIR = Path("./chroma_db_greekbertChatbotVol106")
19
- ASSETS_DIR = Path("./assets")
20
- STATIC_PDF_DIR = Path("./static_pdfs")
21
- STATIC_PDF_DIR_NAME = "static_pdfs"
22
-
23
- COL_NAME = "dataset14_grbert_charword"
24
- MODEL_NAME = "sentence-transformers/paraphrase-xlm-r-multilingual-v1"
25
- CHUNK_SIZE = 512
26
- ALPHA_BASE = 0.2
27
- ALPHA_LONGQ = 0.5
28
- DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
29
-
30
- print(f"Running on device: {DEVICE}")
31
-
32
- # ----------------------- PRE-/POST HELPERS ----------------------------
33
- def strip_acc(s: str) -> str:
34
- return ''.join(ch for ch in unicodedata.normalize('NFD', s)
35
- if not unicodedata.combining(ch))
36
-
37
- STOP = {"σχετικο", "σχετικα", "με", "και"}
38
-
39
- def preprocess(txt: str) -> str:
40
- txt = strip_acc(txt.lower())
41
- txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
42
- txt = re.sub(r"\s+", " ", txt).strip()
43
- return " ".join(w for w in txt.split() if w not in STOP)
44
-
45
- def cls_embed(texts, tok, model):
46
- out = []
47
- enc = tok(texts, padding=True, truncation=True,
48
- max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
49
- with torch.no_grad():
50
- hs = model(**enc, output_hidden_states=True).hidden_states
51
- cls = torch.stack(hs[-4:],0).mean(0)[:,0,:]
52
- cls = torch.nn.functional.normalize(cls, p=2, dim=1)
53
- out.append(cls.cpu())
54
- return torch.cat(out).numpy()
55
-
56
- # ---------------------- LOAD MODELS & DATA (Μία φορά κατά την εκκίνηση) --------------------
57
- print("⏳ Loading Model and Tokenizer...")
58
- try:
59
- tok = AutoTokenizer.from_pretrained(MODEL_NAME)
60
- model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
61
- print("✓ Model and tokenizer loaded.")
62
- except Exception as e:
63
- print(f"CRITICAL ERROR loading model/tokenizer: {e}")
64
- raise
65
-
66
- print("⏳ Loading TF-IDF vectorizers and SPARSE matrices...")
67
- try:
68
- char_vec = joblib.load(ASSETS_DIR / "char_vectorizer.joblib")
69
- word_vec = joblib.load(ASSETS_DIR / "word_vectorizer.joblib")
70
- X_char = scipy.sparse.load_npz(ASSETS_DIR / "X_char_sparse.npz")
71
- X_word = scipy.sparse.load_npz(ASSETS_DIR / "X_word_sparse.npz")
72
- print("✓ TF-IDF components loaded (sparse matrices).")
73
- print(f" → X_char shape: {X_char.shape}, type: {type(X_char)}")
74
- print(f" → X_word shape: {X_word.shape}, type: {type(X_word)}")
75
- except Exception as e:
76
- print(f"CRITICAL ERROR loading TF-IDF components: {e}")
77
- raise
78
-
79
- print("⏳ Loading chunk data (pre_chunks, raw_chunks, ids, metas)...")
80
- try:
81
- with open(ASSETS_DIR / "pre_chunks.pkl", "rb") as f:
82
- pre_chunks = pickle.load(f)
83
- with open(ASSETS_DIR / "raw_chunks.pkl", "rb") as f:
84
- raw_chunks = pickle.load(f)
85
- with open(ASSETS_DIR / "ids.pkl", "rb") as f:
86
- ids = pickle.load(f)
87
- with open(ASSETS_DIR / "metas.pkl", "rb") as f:
88
- metas = pickle.load(f)
89
- print(f"✓ Chunk data loaded. Total chunks from ids: {len(ids):,}")
90
- if not all([pre_chunks, raw_chunks, ids, metas]):
91
- print("WARNING: One or more chunk data lists are empty!")
92
- except Exception as e:
93
- print(f"CRITICAL ERROR loading chunk data: {e}")
94
- raise
95
-
96
- print("⏳ Connecting to ChromaDB...")
97
- try:
98
- client = chromadb.PersistentClient(path=str(DB_DIR.resolve()))
99
- col = client.get_collection(COL_NAME)
100
- print(f"✓ Connected to ChromaDB. Collection '{COL_NAME}' count: {col.count()}")
101
- if col.count() == 0:
102
- print("WARNING: ChromaDB collection is empty or not found correctly!")
103
- except Exception as e:
104
- print(f"CRITICAL ERROR connecting to ChromaDB or getting collection: {e}")
105
- print(f"Attempted DB path for PersistentClient: {str(DB_DIR.resolve())}")
106
- print("Ensure the ChromaDB directory structure is correct in your Hugging Face Space repository.")
107
- raise
108
-
109
- # ---------------------- HYBRID SEARCH (Κύρια Λογική) ---------------------------------
110
- def hybrid_search_gradio(query, k=5):
111
- if not query.strip():
112
- return "Παρακαλώ εισάγετε μια ερώτηση."
113
-
114
- if not ids:
115
- return "Σφάλμα: Τα δεδομένα αναζήτησης (ids) δεν έχουν φορτωθεί. Επικοινωνήστε με τον διαχειριστή."
116
-
117
- q_pre = preprocess(query)
118
- words = q_pre.split()
119
- alpha = ALPHA_LONGQ if len(words) > 30 else ALPHA_BASE
120
-
121
- exact_ids_set = {ids[i] for i, t in enumerate(pre_chunks) if q_pre in t}
122
-
123
- q_emb_np = cls_embed([q_pre], tok, model)
124
- q_emb_list = q_emb_np.tolist()
125
-
126
- try:
127
- sem_results = col.query(
128
- query_embeddings=q_emb_list,
129
- n_results=min(k * 30, len(ids)),
130
- include=["distances", "metadatas", "documents"]
131
- )
132
- except Exception as e:
133
- print(f"ERROR during ChromaDB query: {e}")
134
- return "Σφάλμα κατά την σημασιολογική αναζήτηση."
135
-
136
- sem_sims = {doc_id: 1 - dist for doc_id, dist in zip(sem_results["ids"][0], sem_results["distances"][0])}
137
-
138
- q_char_sparse = char_vec.transform([q_pre])
139
- q_char_normalized = sk_normalize(q_char_sparse)
140
- char_sim_scores = (q_char_normalized @ X_char.T).toarray().flatten()
141
-
142
- q_word_sparse = word_vec.transform([q_pre])
143
- q_word_normalized = sk_normalize(q_word_sparse)
144
- word_sim_scores = (q_word_normalized @ X_word.T).toarray().flatten()
145
-
146
- lex_sims = {}
147
- for idx, (c_score, w_score) in enumerate(zip(char_sim_scores, word_sim_scores)):
148
- if c_score > 0 or w_score > 0:
149
- if idx < len(ids):
150
- lex_sims[ids[idx]] = 0.85 * c_score + 0.15 * w_score
151
- else:
152
- print(f"Warning: Lexical score index {idx} out of bounds for ids list (len: {len(ids)}).")
153
-
154
- all_chunk_ids_set = set(sem_sims.keys()) | set(lex_sims.keys()) | exact_ids_set
155
- scored = []
156
- for chunk_id_key in all_chunk_ids_set:
157
- s = alpha * sem_sims.get(chunk_id_key, 0.0) + \
158
- (1 - alpha) * lex_sims.get(chunk_id_key, 0.0)
159
- if chunk_id_key in exact_ids_set:
160
- s = 1.0
161
- scored.append((chunk_id_key, s))
162
-
163
- scored.sort(key=lambda x: x[1], reverse=True)
164
-
165
- hits_output = []
166
- seen_doc_main_ids = set()
167
- for chunk_id_val, score_val in scored:
168
- try:
169
- idx_in_lists = ids.index(chunk_id_val)
170
- except ValueError:
171
- print(f"Warning: chunk_id '{chunk_id_val}' from search results not found in global 'ids' list. Skipping.")
172
- continue
173
-
174
- doc_meta = metas[idx_in_lists]
175
- doc_main_id = doc_meta['id']
176
-
177
- if doc_main_id in seen_doc_main_ids:
178
- continue
179
-
180
- original_url_from_meta = doc_meta.get('url', '#')
181
-
182
- # *** ΕΝΑΡΞΗ ΤΡΟΠΟΠΟΙΗΜΕΝΟΥ/ΝΕΟΥ ΚΩΔΙΚΑ ΓΙΑ PDF DEBUGGING ***
183
- pdf_serve_url = "#"
184
- pdf_filename_display = "N/A"
185
- pdf_filename_extracted = None # Αρχικοποίηση
186
-
187
- if original_url_from_meta and original_url_from_meta != '#':
188
- pdf_filename_extracted = os.path.basename(original_url_from_meta)
189
- print(f"--- Debug: Original URL: {original_url_from_meta}, Initial Extracted filename: {pdf_filename_extracted}")
190
-
191
- # --- ΠΡΟΣΩΡΙΝΟΣ ΚΩΔΙΚΑΣ ΓΙΑ ΔΟΚΙΜΗ ASCII FILENAME (Μπορείτε να τον ενεργοποιήσετε αφαιρώντας τα σχόλια) ---
192
- # TARGET_ORIGINAL_FILENAME_FOR_TEST = "6ΑΤΘ469Β7Η-963.pdf" # Το αρχικό ελληνικό όνομα που είχατε μετονομάσει
193
- # ASCII_TEST_FILENAME = "testfileGR.pdf" # Το νέο ASCII όνομα που βάλατε στο static_pdfs
194
- #
195
- # if pdf_filename_extracted == TARGET_ORIGINAL_FILENAME_FOR_TEST:
196
- # print(f"--- INFO: ASCII Filename Test Active ---")
197
- # print(f"--- Original filename was: {pdf_filename_extracted}")
198
- # print(f"--- Temporarily using: {ASCII_TEST_FILENAME} for linking and checking existence.")
199
- # pdf_filename_extracted = ASCII_TEST_FILENAME
200
- # --- ΤΕΛΟΣ ΠΡΟΣΩΡΙΝΟΥ ΚΩΔΙΚΑ ASCII ---
201
-
202
- if pdf_filename_extracted and pdf_filename_extracted.lower().endswith(".pdf"):
203
- potential_pdf_path_on_server = STATIC_PDF_DIR / pdf_filename_extracted
204
-
205
- print(f"--- Debug: Final pdf_filename_extracted to check: {pdf_filename_extracted}")
206
- print(f"--- Debug: Checking for PDF at server path: {potential_pdf_path_on_server.resolve()}")
207
-
208
- if potential_pdf_path_on_server.exists() and potential_pdf_path_on_server.is_file():
209
- print(f"--- Debug: Path.exists() and Path.is_file() are TRUE for {potential_pdf_path_on_server.resolve()}. Attempting to open...")
210
- try:
211
- # Προσπάθεια ανοίγματος του αρχείου σε binary read mode και ανάγνωσης ενός byte
212
- with open(potential_pdf_path_on_server, "rb") as f_test_access:
213
- f_test_access.read(1)
214
- print(f"--- Debug: Successfully opened and read a byte from: {potential_pdf_path_on_server.resolve()}")
215
-
216
- pdf_serve_url = f"/file/{STATIC_PDF_DIR_NAME}/{pdf_filename_extracted}"
217
- pdf_filename_display = pdf_filename_extracted
218
-
219
- except Exception as e_file_access:
220
- print(f"!!! CRITICAL ERROR trying to open/read file {potential_pdf_path_on_server.resolve()}: {e_file_access}")
221
- pdf_filename_display = "Error accessing file content" # Ενημέρωση για εμφάνιση
222
- else:
223
- print(f"--- Debug: Path.exists() or Path.is_file() is FALSE for {potential_pdf_path_on_server.resolve()}")
224
- pdf_filename_display = "File not found by script"
225
- else:
226
- if not pdf_filename_extracted: # Αν το pdf_filename_extracted κατέληξε κενό
227
- print(f"--- Debug: pdf_filename_extracted is empty or None after os.path.basename or ASCII test.")
228
- else: # Αν δεν έχει επέκταση .pdf
229
- print(f"--- Debug: Extracted filename '{pdf_filename_extracted}' does not end with .pdf")
230
- pdf_filename_display = "Not a valid PDF link"
231
- else: # original_url_from_meta ήταν κενό ή '#'
232
- print(f"--- Debug: No valid original_url_from_meta found. URL was: '{original_url_from_meta}'")
233
- pdf_filename_display = "No source URL"
234
-
235
- # *** ΤΕΛΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΟΥ/ΝΕΟΥ ΚΩΔΙΚΑ ΓΙΑ PDF DEBUGGING ***
236
-
237
- hits_output.append({
238
- "score": score_val,
239
- "title": doc_meta.get('title', 'N/A'),
240
- "snippet": raw_chunks[idx_in_lists][:500] + " ...",
241
- "original_url_meta": original_url_from_meta,
242
- "pdf_serve_url": pdf_serve_url,
243
- "pdf_filename_display": pdf_filename_display
244
- })
245
- seen_doc_main_ids.add(doc_main_id)
246
- if len(hits_output) >= k:
247
- break
248
-
249
- if not hits_output:
250
- return "Δεν βρέθηκαν σχετικά αποτελέσματα."
251
-
252
- output_md = f"Βρέθηκαν **{len(hits_output)}** σχετικά αποτελέσματα:\n\n"
253
- for hit in hits_output:
254
- output_md += f"### {hit['title']} (Score: {hit['score']:.3f})\n"
255
- snippet_wrapped = textwrap.fill(hit['snippet'].replace("\n", " "), width=100)
256
- output_md += f"**Απόσπασμα:** {snippet_wrapped}\n"
257
-
258
- if hit['pdf_serve_url'] and hit['pdf_serve_url'] != '#':
259
- output_md += f"**Πηγή (PDF):** <a href='{hit['pdf_serve_url']}' target='_blank'>{hit['pdf_filename_display']}</a>\n"
260
- elif hit['original_url_meta'] and hit['original_url_meta'] != '#':
261
- output_md += f"**Πηγή (αρχικό):** [{hit['original_url_meta']}]({hit['original_url_meta']})\n"
262
- output_md += "---\n"
263
-
264
- # ΠΡΟΣΩΡΙΝΗ ΠΡΟΣΘΗΚΗ ΓΙΑ ΔΟΚΙΜΗ TXT ΑΡΧΕΙΟΥ
265
- # Βεβαιωθείτε ότι έχετε ανεβάσει το 'test_text_file.txt' στον φάκελο 'static_pdfs'.
266
- # Αυτός ο σύνδεσμος θα εμφανιστεί στο κάτω μέρος των αποτελεσμάτων αναζήτησης.
267
- output_md += "\n\n---\n**Δοκιμαστικός Σύνδεσμος Κειμένου:** <a href='/file/static_pdfs/test_text_file.txt' target='_blank'>Άνοιγμα test_text_file.txt</a>\n"
268
- # Η ρύθμιση sanitize_html=False στο gr.Markdown που έχετε ήδη, επιτρέπει αυτή την HTML.
269
-
270
- return output_md
271
-
272
-
273
- # ---------------------- GRADIO INTERFACE -----------------------------------
274
- print("🚀 Launching Gradio Interface...")
275
- iface = gr.Interface(
276
- fn=hybrid_search_gradio,
277
- inputs=gr.Textbox(lines=3, placeholder="Γράψε την ερώτησή σου εδώ...", label="Ερώτηση προς τον βοηθό:"),
278
- outputs=gr.Markdown(label="Απαντήσεις από τα έγγραφα:", rtl=False, sanitize_html=False),
279
- title="🏛️ Ελληνικό Chatbot Υβριδικής Αναζήτησης (v1.0.9)", # Νέα έκδοση για παρακολούθηση
280
- description="Πληκτρολογήστε την ερώτησή σας για αναζήτηση στα διαθέσιμα έγγραφα. Η αναζήτηση συνδυάζει σημασιολογική ομοιότητα (GreekBERT) και ομοιότητα λέξεων/χαρακτήρων (TF-IDF).\nΧρησιμοποιεί το μοντέλο: sentence-transformers/paraphrase-xlm-r-multilingual-v1.\nΤα PDF ανοίγουν σε νέα καρτέλα.",
281
- allow_flagging="never",
282
- examples=[
283
- ["Ποια είναι τα μέτρα για τον κορονοϊό;", 5],
284
- ["Πληροφορίες για άδεια ειδικού σκοπού", 3],
285
- ["Τι προβλέπεται για τις μετακινήσεις εκτός νομού;", 5]
286
- ],
287
- )
288
-
289
- if __name__ == '__main__':
290
- # Παραλλαγή 2
291
- # STATIC_PDF_DIR ορίζεται στην αρχή του αρχείου ως Path("./static_pdfs")
292
- iface.launch(allowed_paths=[str(STATIC_PDF_DIR.resolve())])