ChatbotVol106 / app.py
TzepChris's picture
Upload app.py
97d093d verified
raw
history blame
14.4 kB
import gradio as gr
import torch
import unicodedata
import re
import numpy as np
from pathlib import Path
from transformers import AutoTokenizer, AutoModel
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.preprocessing import normalize as sk_normalize
import chromadb
import joblib
import pickle
import scipy.sparse
import textwrap
import os
# --------------------------- CONFIG -----------------------------------
DB_DIR = Path("./chroma_db_greekbertChatbotVol106")
ASSETS_DIR = Path("./assets")
STATIC_PDF_DIR = Path("./static_pdfs")
STATIC_PDF_DIR_NAME = "static_pdfs"
COL_NAME = "dataset14_grbert_charword"
MODEL_NAME = "sentence-transformers/paraphrase-xlm-r-multilingual-v1"
CHUNK_SIZE = 512
ALPHA_BASE = 0.2
ALPHA_LONGQ = 0.5
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running on device: {DEVICE}")
# ----------------------- PRE-/POST HELPERS ----------------------------
def strip_acc(s: str) -> str:
return ''.join(ch for ch in unicodedata.normalize('NFD', s)
if not unicodedata.combining(ch))
STOP = {"σχετικο", "σχετικα", "με", "και"}
def preprocess(txt: str) -> str:
txt = strip_acc(txt.lower())
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
txt = re.sub(r"\s+", " ", txt).strip()
return " ".join(w for w in txt.split() if w not in STOP)
def cls_embed(texts, tok, model):
out = []
enc = tok(texts, padding=True, truncation=True,
max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
with torch.no_grad():
hs = model(**enc, output_hidden_states=True).hidden_states
cls = torch.stack(hs[-4:],0).mean(0)[:,0,:]
cls = torch.nn.functional.normalize(cls, p=2, dim=1)
out.append(cls.cpu())
return torch.cat(out).numpy()
# ---------------------- LOAD MODELS & DATA (Μία φορά κατά την εκκίνηση) --------------------
print("⏳ Loading Model and Tokenizer...")
try:
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
print("✓ Model and tokenizer loaded.")
except Exception as e:
print(f"CRITICAL ERROR loading model/tokenizer: {e}")
raise
print("⏳ Loading TF-IDF vectorizers and SPARSE matrices...")
try:
char_vec = joblib.load(ASSETS_DIR / "char_vectorizer.joblib")
word_vec = joblib.load(ASSETS_DIR / "word_vectorizer.joblib")
X_char = scipy.sparse.load_npz(ASSETS_DIR / "X_char_sparse.npz")
X_word = scipy.sparse.load_npz(ASSETS_DIR / "X_word_sparse.npz")
print("✓ TF-IDF components loaded (sparse matrices).")
print(f" → X_char shape: {X_char.shape}, type: {type(X_char)}")
print(f" → X_word shape: {X_word.shape}, type: {type(X_word)}")
except Exception as e:
print(f"CRITICAL ERROR loading TF-IDF components: {e}")
raise
print("⏳ Loading chunk data (pre_chunks, raw_chunks, ids, metas)...")
try:
with open(ASSETS_DIR / "pre_chunks.pkl", "rb") as f:
pre_chunks = pickle.load(f)
with open(ASSETS_DIR / "raw_chunks.pkl", "rb") as f:
raw_chunks = pickle.load(f)
with open(ASSETS_DIR / "ids.pkl", "rb") as f:
ids = pickle.load(f)
with open(ASSETS_DIR / "metas.pkl", "rb") as f:
metas = pickle.load(f)
print(f"✓ Chunk data loaded. Total chunks from ids: {len(ids):,}")
if not all([pre_chunks, raw_chunks, ids, metas]):
print("WARNING: One or more chunk data lists are empty!")
except Exception as e:
print(f"CRITICAL ERROR loading chunk data: {e}")
raise
print("⏳ Connecting to ChromaDB...")
try:
client = chromadb.PersistentClient(path=str(DB_DIR.resolve()))
col = client.get_collection(COL_NAME)
print(f"✓ Connected to ChromaDB. Collection '{COL_NAME}' count: {col.count()}")
if col.count() == 0:
print("WARNING: ChromaDB collection is empty or not found correctly!")
except Exception as e:
print(f"CRITICAL ERROR connecting to ChromaDB or getting collection: {e}")
print(f"Attempted DB path for PersistentClient: {str(DB_DIR.resolve())}")
print("Ensure the ChromaDB directory structure is correct in your Hugging Face Space repository.")
raise
# ---------------------- HYBRID SEARCH (Κύρια Λογική) ---------------------------------
def hybrid_search_gradio(query, k=5):
if not query.strip():
return "Παρακαλώ εισάγετε μια ερώτηση."
if not ids:
return "Σφάλμα: Τα δεδομένα αναζήτησης (ids) δεν έχουν φορτωθεί. Επικοινωνήστε με τον διαχειριστή."
q_pre = preprocess(query)
words = q_pre.split()
alpha = ALPHA_LONGQ if len(words) > 30 else ALPHA_BASE
exact_ids_set = {ids[i] for i, t in enumerate(pre_chunks) if q_pre in t}
q_emb_np = cls_embed([q_pre], tok, model)
q_emb_list = q_emb_np.tolist()
try:
sem_results = col.query(
query_embeddings=q_emb_list,
n_results=min(k * 30, len(ids)),
include=["distances", "metadatas", "documents"]
)
except Exception as e:
print(f"ERROR during ChromaDB query: {e}")
return "Σφάλμα κατά την σημασιολογική αναζήτηση."
sem_sims = {doc_id: 1 - dist for doc_id, dist in zip(sem_results["ids"][0], sem_results["distances"][0])}
q_char_sparse = char_vec.transform([q_pre])
q_char_normalized = sk_normalize(q_char_sparse)
char_sim_scores = (q_char_normalized @ X_char.T).toarray().flatten()
q_word_sparse = word_vec.transform([q_pre])
q_word_normalized = sk_normalize(q_word_sparse)
word_sim_scores = (q_word_normalized @ X_word.T).toarray().flatten()
lex_sims = {}
for idx, (c_score, w_score) in enumerate(zip(char_sim_scores, word_sim_scores)):
if c_score > 0 or w_score > 0:
if idx < len(ids):
lex_sims[ids[idx]] = 0.85 * c_score + 0.15 * w_score
else:
print(f"Warning: Lexical score index {idx} out of bounds for ids list (len: {len(ids)}).")
all_chunk_ids_set = set(sem_sims.keys()) | set(lex_sims.keys()) | exact_ids_set
scored = []
for chunk_id_key in all_chunk_ids_set:
s = alpha * sem_sims.get(chunk_id_key, 0.0) + \
(1 - alpha) * lex_sims.get(chunk_id_key, 0.0)
if chunk_id_key in exact_ids_set:
s = 1.0
scored.append((chunk_id_key, s))
scored.sort(key=lambda x: x[1], reverse=True)
hits_output = []
seen_doc_main_ids = set()
for chunk_id_val, score_val in scored:
try:
idx_in_lists = ids.index(chunk_id_val)
except ValueError:
print(f"Warning: chunk_id '{chunk_id_val}' from search results not found in global 'ids' list. Skipping.")
continue
doc_meta = metas[idx_in_lists]
doc_main_id = doc_meta['id']
if doc_main_id in seen_doc_main_ids:
continue
original_url_from_meta = doc_meta.get('url', '#')
# *** ΕΝΑΡΞΗ ΤΡΟΠΟΠΟΙΗΜΕΝΟΥ/ΝΕΟΥ ΚΩΔΙΚΑ ΓΙΑ PDF DEBUGGING ***
pdf_serve_url = "#"
pdf_filename_display = "N/A"
pdf_filename_extracted = None # Αρχικοποίηση
if original_url_from_meta and original_url_from_meta != '#':
pdf_filename_extracted = os.path.basename(original_url_from_meta)
print(f"--- Debug: Original URL: {original_url_from_meta}, Initial Extracted filename: {pdf_filename_extracted}")
# --- ΠΡΟΣΩΡΙΝΟΣ ΚΩΔΙΚΑΣ ΓΙΑ ΔΟΚΙΜΗ ASCII FILENAME (Μπορείτε να τον ενεργοποιήσετε αφαιρώντας τα σχόλια) ---
# TARGET_ORIGINAL_FILENAME_FOR_TEST = "6ΑΤΘ469Β7Η-963.pdf" # Το αρχικό ελληνικό όνομα που είχατε μετονομάσει
# ASCII_TEST_FILENAME = "testfileGR.pdf" # Το νέο ASCII όνομα που βάλατε στο static_pdfs
#
# if pdf_filename_extracted == TARGET_ORIGINAL_FILENAME_FOR_TEST:
# print(f"--- INFO: ASCII Filename Test Active ---")
# print(f"--- Original filename was: {pdf_filename_extracted}")
# print(f"--- Temporarily using: {ASCII_TEST_FILENAME} for linking and checking existence.")
# pdf_filename_extracted = ASCII_TEST_FILENAME
# --- ΤΕΛΟΣ ΠΡΟΣΩΡΙΝΟΥ ΚΩΔΙΚΑ ASCII ---
if pdf_filename_extracted and pdf_filename_extracted.lower().endswith(".pdf"):
potential_pdf_path_on_server = STATIC_PDF_DIR / pdf_filename_extracted
print(f"--- Debug: Final pdf_filename_extracted to check: {pdf_filename_extracted}")
print(f"--- Debug: Checking for PDF at server path: {potential_pdf_path_on_server.resolve()}")
if potential_pdf_path_on_server.exists() and potential_pdf_path_on_server.is_file():
print(f"--- Debug: Path.exists() and Path.is_file() are TRUE for {potential_pdf_path_on_server.resolve()}. Attempting to open...")
try:
# Προσπάθεια ανοίγματος του αρχείου σε binary read mode και ανάγνωσης ενός byte
with open(potential_pdf_path_on_server, "rb") as f_test_access:
f_test_access.read(1)
print(f"--- Debug: Successfully opened and read a byte from: {potential_pdf_path_on_server.resolve()}")
pdf_serve_url = f"/file/{STATIC_PDF_DIR_NAME}/{pdf_filename_extracted}"
pdf_filename_display = pdf_filename_extracted
except Exception as e_file_access:
print(f"!!! CRITICAL ERROR trying to open/read file {potential_pdf_path_on_server.resolve()}: {e_file_access}")
pdf_filename_display = "Error accessing file content" # Ενημέρωση για εμφάνιση
else:
print(f"--- Debug: Path.exists() or Path.is_file() is FALSE for {potential_pdf_path_on_server.resolve()}")
pdf_filename_display = "File not found by script"
else:
if not pdf_filename_extracted: # Αν το pdf_filename_extracted κατέληξε κενό
print(f"--- Debug: pdf_filename_extracted is empty or None after os.path.basename or ASCII test.")
else: # Αν δεν έχει επέκταση .pdf
print(f"--- Debug: Extracted filename '{pdf_filename_extracted}' does not end with .pdf")
pdf_filename_display = "Not a valid PDF link"
else: # original_url_from_meta ήταν κενό ή '#'
print(f"--- Debug: No valid original_url_from_meta found. URL was: '{original_url_from_meta}'")
pdf_filename_display = "No source URL"
# *** ΤΕΛΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΟΥ/ΝΕΟΥ ΚΩΔΙΚΑ ΓΙΑ PDF DEBUGGING ***
hits_output.append({
"score": score_val,
"title": doc_meta.get('title', 'N/A'),
"snippet": raw_chunks[idx_in_lists][:500] + " ...",
"original_url_meta": original_url_from_meta,
"pdf_serve_url": pdf_serve_url,
"pdf_filename_display": pdf_filename_display
})
seen_doc_main_ids.add(doc_main_id)
if len(hits_output) >= k:
break
if not hits_output:
return "Δεν βρέθηκαν σχετικά αποτελέσματα."
output_md = f"Βρέθηκαν **{len(hits_output)}** σχετικά αποτελέσματα:\n\n"
for hit in hits_output:
output_md += f"### {hit['title']} (Score: {hit['score']:.3f})\n"
snippet_wrapped = textwrap.fill(hit['snippet'].replace("\n", " "), width=100)
output_md += f"**Απόσπασμα:** {snippet_wrapped}\n"
if hit['pdf_serve_url'] and hit['pdf_serve_url'] != '#':
output_md += f"**Πηγή (PDF):** <a href='{hit['pdf_serve_url']}' target='_blank'>{hit['pdf_filename_display']}</a>\n"
elif hit['original_url_meta'] and hit['original_url_meta'] != '#':
output_md += f"**Πηγή (αρχικό):** [{hit['original_url_meta']}]({hit['original_url_meta']})\n"
output_md += "---\n"
# ΠΡΟΣΩΡΙΝΗ ΠΡΟΣΘΗΚΗ ΓΙΑ ΔΟΚΙΜΗ TXT ΑΡΧΕΙΟΥ
output_md += "\n\n---\n**Δοκιμαστικός Σύνδεσμος Κειμένου:** <a href='/file/static_pdfs/test_text_file.txt' target='_blank'>Άνοιγμα test_text_file.txt</a>\n"
return output_md
# ---------------------- GRADIO INTERFACE -----------------------------------
print("🚀 Launching Gradio Interface...")
iface = gr.Interface(
fn=hybrid_search_gradio,
inputs=gr.Textbox(lines=3, placeholder="Γράψε την ερώτησή σου εδώ...", label="Ερώτηση προς τον βοηθό:"),
outputs=gr.Markdown(label="Απαντήσεις από τα έγγραφα:", rtl=False, sanitize_html=False),
title="🏛️ Ελληνικό Chatbot Υβριδικής Αναζήτησης (v1.0.9)", # Νέα έκδοση για παρακολούθηση
description="Πληκτρολογήστε την ερώτησή σας για αναζήτηση στα διαθέσιμα έγγραφα. Η αναζήτηση συνδυάζει σημασιολογική ομοιότητα (GreekBERT) και ομοιότητα λέξεων/χαρακτήρων (TF-IDF).\nΧρησιμοποιεί το μοντέλο: sentence-transformers/paraphrase-xlm-r-multilingual-v1.\nΤα PDF ανοίγουν σε νέα καρτέλα.",
allow_flagging="never",
examples=[
["Ποια είναι τα μέτρα για τον κορονοϊό;", 5],
["Πληροφορίες για άδεια ειδικού σκοπού", 3],
["Τι προβλέπεται για τις μετακινήσεις εκτός νομού;", 5]
],
)
if __name__ == '__main__':
# Παραλλαγή 2
# STATIC_PDF_DIR ορίζεται στην αρχή του αρχείου ως Path("./static_pdfs")
iface.launch(allowed_paths=[str(STATIC_PDF_DIR.resolve())])