Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import io
|
| 4 |
+
import random
|
| 5 |
+
import os
|
| 6 |
+
import time
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from deep_translator import GoogleTranslator
|
| 9 |
+
import json
|
| 10 |
+
|
| 11 |
+
# Project by Nymbo
|
| 12 |
+
|
| 13 |
+
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl"
|
| 14 |
+
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
| 15 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 16 |
+
timeout = 100
|
| 17 |
+
|
| 18 |
+
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7):
|
| 19 |
+
if prompt == "" or prompt is None:
|
| 20 |
+
return None
|
| 21 |
+
|
| 22 |
+
key = random.randint(0, 999)
|
| 23 |
+
|
| 24 |
+
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")])
|
| 25 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 26 |
+
|
| 27 |
+
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
| 28 |
+
print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}')
|
| 29 |
+
|
| 30 |
+
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
| 31 |
+
print(f'\033[1mГенерация {key}:\033[0m {prompt}')
|
| 32 |
+
|
| 33 |
+
payload = {
|
| 34 |
+
"inputs": prompt,
|
| 35 |
+
"is_negative": is_negative,
|
| 36 |
+
"steps": steps,
|
| 37 |
+
"cfg_scale": cfg_scale,
|
| 38 |
+
"seed": seed if seed != -1 else random.randint(1, 1000000000),
|
| 39 |
+
"strength": strength
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
| 43 |
+
if response.status_code != 200:
|
| 44 |
+
print(f"Ошибка: Не удалось получить изображение. Статус ответа: {response.status_code}")
|
| 45 |
+
print(f"Содержимое ответа: {response.text}")
|
| 46 |
+
if response.status_code == 503:
|
| 47 |
+
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
| 48 |
+
raise gr.Error(f"{response.status_code}")
|
| 49 |
+
return None
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
image_bytes = response.content
|
| 53 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 54 |
+
print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})')
|
| 55 |
+
return image
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"Ошибка при попытке открыть изображение: {e}")
|
| 58 |
+
return None
|
| 59 |
+
|
| 60 |
+
css = """
|
| 61 |
+
* {}
|
| 62 |
+
footer {visibility: hidden !important;}
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as dalle:
|
| 66 |
+
with gr.Tab("Basic Settings"):
|
| 67 |
+
with gr.Row():
|
| 68 |
+
with gr.Column(elem_id="prompt-container"):
|
| 69 |
+
with gr.Row():
|
| 70 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
|
| 71 |
+
|
| 72 |
+
with gr.Tab("Advanced Settings"):
|
| 73 |
+
with gr.Accordion("Advanced Settings", open=True):
|
| 74 |
+
with gr.Row():
|
| 75 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input")
|
| 76 |
+
with gr.Row():
|
| 77 |
+
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
|
| 78 |
+
with gr.Row():
|
| 79 |
+
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
|
| 80 |
+
with gr.Row():
|
| 81 |
+
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
| 82 |
+
with gr.Row():
|
| 83 |
+
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
|
| 84 |
+
with gr.Row():
|
| 85 |
+
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
| 86 |
+
|
| 87 |
+
with gr.Row():
|
| 88 |
+
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
| 89 |
+
with gr.Row():
|
| 90 |
+
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
| 91 |
+
|
| 92 |
+
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output)
|
| 93 |
+
|
| 94 |
+
dalle.launch(show_api=False, share=False)
|