Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
-
import io, math, json, gzip
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
#
|
| 9 |
def shannon_entropy_from_counts(counts: np.ndarray) -> float:
|
| 10 |
counts = counts.astype(float)
|
| 11 |
total = counts.sum()
|
|
@@ -94,7 +94,6 @@ def kd_entropy(points: np.ndarray, max_leaf: int = 128, axis: int = 0) -> float:
|
|
| 94 |
return 0.0
|
| 95 |
if n <= max_leaf:
|
| 96 |
return 0.0
|
| 97 |
-
d = points.shape[1]
|
| 98 |
vals = points[:, axis]
|
| 99 |
med = np.median(vals)
|
| 100 |
left = points[vals <= med]
|
|
@@ -105,7 +104,7 @@ def kd_entropy(points: np.ndarray, max_leaf: int = 128, axis: int = 0) -> float:
|
|
| 105 |
for p in (pL, pR):
|
| 106 |
if p > 0:
|
| 107 |
H_here += -p * math.log(p, 2)
|
| 108 |
-
next_axis = (axis + 1) %
|
| 109 |
return H_here + kd_entropy(left, max_leaf, next_axis) + kd_entropy(right, max_leaf, next_axis)
|
| 110 |
|
| 111 |
def normalize(value: float, max_value: float) -> float:
|
|
@@ -114,7 +113,115 @@ def normalize(value: float, max_value: float) -> float:
|
|
| 114 |
v = max(0.0, min(1.0, value / max_value))
|
| 115 |
return float(v)
|
| 116 |
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
report = {}
|
| 119 |
n_rows, n_cols = df.shape
|
| 120 |
report["shape"] = {"rows": int(n_rows), "cols": int(n_cols)}
|
|
@@ -180,6 +287,7 @@ def compute_metrics(df: pd.DataFrame):
|
|
| 180 |
report["pareto_maxima_2d"] = 0
|
| 181 |
report["kd_partition_entropy_bits"] = 0.0
|
| 182 |
|
|
|
|
| 183 |
max_bits = math.log2(max(2, n_rows))
|
| 184 |
he_parts = []
|
| 185 |
he_parts.append(1.0 - max(0.0, min(1.0, report["gzip_compression_ratio"])))
|
|
@@ -202,58 +310,101 @@ def compute_metrics(df: pd.DataFrame):
|
|
| 202 |
|
| 203 |
return report
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
for c, st in report.get("per_column", {}).items():
|
| 223 |
-
|
| 224 |
if "entropy_binned_bits" in st:
|
| 225 |
-
|
| 226 |
-
f"{st['monotone_runs']} runs (run-entropy {st['run_entropy_bits']:.2f} bits), "
|
| 227 |
-
f"sortedness {st['sortedness_fraction']:.2f}.")
|
| 228 |
elif "entropy_bits" in st:
|
| 229 |
-
|
| 230 |
-
f"{st['unique_values']} unique.")
|
| 231 |
else:
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
|
|
|
|
|
|
|
|
|
| 236 |
def analyze(file):
|
| 237 |
if file is None:
|
| 238 |
-
return "Please upload a CSV.", ""
|
| 239 |
try:
|
| 240 |
df = pd.read_csv(file.name)
|
| 241 |
except Exception as e:
|
| 242 |
-
return f"Failed to read CSV: {e}", ""
|
|
|
|
| 243 |
report = compute_metrics(df)
|
| 244 |
-
|
| 245 |
-
return json.dumps(report, indent=2), md
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
with gr.Row():
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
-
if __name__ == "__main__":
|
| 259 |
demo.launch()
|
|
|
|
| 1 |
+
import io, math, json, gzip
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
# -------------------------------
|
| 7 |
+
# Core metric helpers
|
| 8 |
+
# -------------------------------
|
| 9 |
def shannon_entropy_from_counts(counts: np.ndarray) -> float:
|
| 10 |
counts = counts.astype(float)
|
| 11 |
total = counts.sum()
|
|
|
|
| 94 |
return 0.0
|
| 95 |
if n <= max_leaf:
|
| 96 |
return 0.0
|
|
|
|
| 97 |
vals = points[:, axis]
|
| 98 |
med = np.median(vals)
|
| 99 |
left = points[vals <= med]
|
|
|
|
| 104 |
for p in (pL, pR):
|
| 105 |
if p > 0:
|
| 106 |
H_here += -p * math.log(p, 2)
|
| 107 |
+
next_axis = (axis + 1) % points.shape[1]
|
| 108 |
return H_here + kd_entropy(left, max_leaf, next_axis) + kd_entropy(right, max_leaf, next_axis)
|
| 109 |
|
| 110 |
def normalize(value: float, max_value: float) -> float:
|
|
|
|
| 113 |
v = max(0.0, min(1.0, value / max_value))
|
| 114 |
return float(v)
|
| 115 |
|
| 116 |
+
# -------------------------------
|
| 117 |
+
# Scoring + interpretations
|
| 118 |
+
# -------------------------------
|
| 119 |
+
def grade_band(value: float, thresholds: list, labels: list):
|
| 120 |
+
"""Generic banding helper: thresholds ascending; returns (label_idx, label)."""
|
| 121 |
+
for i, t in enumerate(thresholds):
|
| 122 |
+
if value <= t:
|
| 123 |
+
return i, labels[i]
|
| 124 |
+
return len(labels)-1, labels[-1]
|
| 125 |
+
|
| 126 |
+
def interpret_report(report: dict) -> dict:
|
| 127 |
+
"""Produce human-friendly interpretations with color badges and advice."""
|
| 128 |
+
r, c = report["shape"]["rows"], report["shape"]["cols"]
|
| 129 |
+
max_bits = math.log2(max(2, r))
|
| 130 |
+
|
| 131 |
+
# Harvestable Energy (0..1)
|
| 132 |
+
he = report.get("harvestable_energy_score", 0.0)
|
| 133 |
+
he_pct = round(100 * he)
|
| 134 |
+
he_idx, he_label = grade_band(1.0 - he, [0.15, 0.35, 0.6, 0.85], # invert so higher is better
|
| 135 |
+
["Excellent", "High", "Moderate", "Low", "Very Low"])
|
| 136 |
+
he_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][he_idx]
|
| 137 |
+
|
| 138 |
+
# Gzip ratio (lower is better)
|
| 139 |
+
gz = report.get("gzip_compression_ratio", 1.0)
|
| 140 |
+
gz_idx, gz_label = grade_band(gz, [0.45, 0.7, 0.9, 1.1], ["Highly compressible", "Compressible", "Some structure", "Low structure", "Unstructured"])
|
| 141 |
+
gz_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][gz_idx]
|
| 142 |
+
|
| 143 |
+
# kd-entropy (lower is better). Normalize by log2(n)
|
| 144 |
+
Hkd = float(report.get("kd_partition_entropy_bits", 0.0))
|
| 145 |
+
Hkd_norm = normalize(Hkd, max_bits)
|
| 146 |
+
kd_idx, kd_label = grade_band(Hkd_norm, [0.15, 0.3, 0.5, 0.75], ["Simple spatial blocks", "Moderately simple", "Mixed", "Complex", "Highly complex"])
|
| 147 |
+
kd_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][kd_idx]
|
| 148 |
+
|
| 149 |
+
# Run-entropy / Sortedness aggregation for numeric columns
|
| 150 |
+
per_col = report.get("per_column", {})
|
| 151 |
+
run_H = []
|
| 152 |
+
sorted_fracs = []
|
| 153 |
+
for col, st in per_col.items():
|
| 154 |
+
if "run_entropy_bits" in st:
|
| 155 |
+
run_H.append(st["run_entropy_bits"])
|
| 156 |
+
sorted_fracs.append(st.get("sortedness_fraction", 0.0))
|
| 157 |
+
if run_H:
|
| 158 |
+
runH_mean = float(np.mean(run_H))
|
| 159 |
+
runH_norm = normalize(runH_mean, max_bits)
|
| 160 |
+
sort_mean = float(np.mean(sorted_fracs)) if sorted_fracs else 0.0
|
| 161 |
+
else:
|
| 162 |
+
runH_norm = 1.0
|
| 163 |
+
sort_mean = 0.0
|
| 164 |
+
|
| 165 |
+
run_idx, run_label = grade_band(runH_norm, [0.15, 0.3, 0.5, 0.75], ["Long smooth runs", "Mostly smooth", "Mixed runs", "Choppy", "Highly choppy"])
|
| 166 |
+
run_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][run_idx]
|
| 167 |
+
|
| 168 |
+
sort_idx, sort_label = grade_band(1.0 - sort_mean, [0.15, 0.3, 0.5, 0.75], ["Highly sorted", "Mostly sorted", "Partially sorted", "Barely sorted", "Unsorted"])
|
| 169 |
+
sort_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][sort_idx]
|
| 170 |
+
|
| 171 |
+
# Duplicate rows
|
| 172 |
+
dup = report.get("duplicate_row_fraction", 0.0)
|
| 173 |
+
dup_idx, dup_label = grade_band(dup, [0.01, 0.05, 0.15, 0.3], ["Clean", "Light dups", "Moderate dups", "High dups", "Very high dups"])
|
| 174 |
+
dup_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][dup_idx]
|
| 175 |
+
|
| 176 |
+
# Recommendations (simple rule-based)
|
| 177 |
+
recs = []
|
| 178 |
+
if he >= 0.7:
|
| 179 |
+
recs.append("Leverage **adaptive algorithms** (TimSort-style merges, linear hull/skyline passes) for near-linear performance.")
|
| 180 |
+
elif he >= 0.4:
|
| 181 |
+
recs.append("Consider **light preprocessing** (bucketing, dedupe) to unlock more adaptive speedups.")
|
| 182 |
+
else:
|
| 183 |
+
recs.append("Expect **near worst-case costs**; use robust algorithms and consider feature engineering/cleaning.")
|
| 184 |
+
|
| 185 |
+
if gz <= 0.7:
|
| 186 |
+
recs.append("Data is **highly compressible** β try dictionary/columnar encoding and caching to cut memory/IO.")
|
| 187 |
+
elif gz >= 1.0:
|
| 188 |
+
recs.append("Data is **hard to compress** β prioritize dimensionality reduction or noise filtering.")
|
| 189 |
+
|
| 190 |
+
if runH_norm <= 0.3 or sort_mean >= 0.7:
|
| 191 |
+
recs.append("Columns show **long monotone runs** β merges and single-pass scans will be efficient.")
|
| 192 |
+
else:
|
| 193 |
+
recs.append("Columns are **choppy** β batch/aggregate before sorting to reduce comparisons.")
|
| 194 |
+
|
| 195 |
+
if Hkd_norm <= 0.3:
|
| 196 |
+
recs.append("Spatial structure is **simple** β kd/quad trees will be shallow; range queries will be fast.")
|
| 197 |
+
elif Hkd_norm >= 0.6:
|
| 198 |
+
recs.append("Spatial structure is **complex** β consider clustering/tiling before building indexes.")
|
| 199 |
+
|
| 200 |
+
if dup >= 0.05:
|
| 201 |
+
recs.append("De-duplicate rows to lower entropy and improve compression & joins.")
|
| 202 |
+
|
| 203 |
+
# Summary verdict
|
| 204 |
+
verdict = ["Outstanding structure for fast algorithms.",
|
| 205 |
+
"Strong latent order; plenty of speed to harvest.",
|
| 206 |
+
"Mixed: some order present; moderate gains possible.",
|
| 207 |
+
"Low order; focus on cleaning and feature engineering.",
|
| 208 |
+
"Chaotic: assume worst-case runtimes."][he_idx]
|
| 209 |
+
|
| 210 |
+
return {
|
| 211 |
+
"he": {"pct": he_pct, "label": he_label, "color": he_color},
|
| 212 |
+
"gzip": {"value": gz, "label": gz_label, "color": gz_color},
|
| 213 |
+
"kd": {"value": Hkd, "label": kd_label, "color": kd_color},
|
| 214 |
+
"runs": {"value": runH_norm, "label": run_label, "color": run_color},
|
| 215 |
+
"sorted": {"value": sort_mean, "label": sort_label, "color": sort_color},
|
| 216 |
+
"dup": {"value": dup, "label": dup_label, "color": dup_color},
|
| 217 |
+
"verdict": verdict,
|
| 218 |
+
"recs": recs[:6]
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
# -------------------------------
|
| 222 |
+
# Compute metrics
|
| 223 |
+
# -------------------------------
|
| 224 |
+
def compute_metrics(df: pd.DataFrame) -> dict:
|
| 225 |
report = {}
|
| 226 |
n_rows, n_cols = df.shape
|
| 227 |
report["shape"] = {"rows": int(n_rows), "cols": int(n_cols)}
|
|
|
|
| 287 |
report["pareto_maxima_2d"] = 0
|
| 288 |
report["kd_partition_entropy_bits"] = 0.0
|
| 289 |
|
| 290 |
+
# Harvestable Energy
|
| 291 |
max_bits = math.log2(max(2, n_rows))
|
| 292 |
he_parts = []
|
| 293 |
he_parts.append(1.0 - max(0.0, min(1.0, report["gzip_compression_ratio"])))
|
|
|
|
| 310 |
|
| 311 |
return report
|
| 312 |
|
| 313 |
+
# -------------------------------
|
| 314 |
+
# UI rendering helpers
|
| 315 |
+
# -------------------------------
|
| 316 |
+
def badge(text: str, color: str) -> str:
|
| 317 |
+
return f"<span style='background:{color};color:white;padding:6px 10px;border-radius:999px;font-weight:600'>{text}</span>"
|
| 318 |
+
|
| 319 |
+
def metric_card(title: str, value: str, badge_html: str) -> str:
|
| 320 |
+
return f"""
|
| 321 |
+
<div style="flex:1;min-width:220px;border:1px solid #e5e7eb;border-radius:14px;padding:14px 16px;">
|
| 322 |
+
<div style="font-size:14px;color:#6b7280;margin-bottom:8px">{title}</div>
|
| 323 |
+
<div style="font-size:22px;font-weight:700;margin-bottom:10px">{value}</div>
|
| 324 |
+
{badge_html}
|
| 325 |
+
</div>
|
| 326 |
+
"""
|
| 327 |
+
|
| 328 |
+
def render_dashboard(report: dict, interp: dict) -> str:
|
| 329 |
+
he = interp["he"]
|
| 330 |
+
gz = interp["gzip"]
|
| 331 |
+
kd = interp["kd"]
|
| 332 |
+
runs = interp["runs"]
|
| 333 |
+
sortb = interp["sorted"]
|
| 334 |
+
dup = interp["dup"]
|
| 335 |
+
|
| 336 |
+
cards = []
|
| 337 |
+
cards.append(metric_card("Harvestable Energy", f"{he['pct']} / 100", badge(he['label'], he['color'])))
|
| 338 |
+
cards.append(metric_card("Compressibility (gzip)", f"{gz['value']:.3f}", badge(gz['label'], gz['color'])))
|
| 339 |
+
cards.append(metric_card("Range-Partition Entropy (kd bits)", f"{kd['value']:.3f}", badge(kd['label'], kd['color'])))
|
| 340 |
+
cards.append(metric_card("Run-Entropy (avg, normalized)", f"{runs['value']:.2f}", badge(runs['label'], runs['color'])))
|
| 341 |
+
cards.append(metric_card("Sortedness (avg fraction)", f"{sortb['value']:.2f}", badge(sortb['label'], sortb['color'])))
|
| 342 |
+
cards.append(metric_card("Duplicate Rows (fraction)", f"{dup['value']:.2f}", badge(dup['label'], dup['color'])))
|
| 343 |
+
|
| 344 |
+
grid = "<div style='display:flex;flex-wrap:wrap;gap:12px'>" + "".join(cards) + "</div>"
|
| 345 |
+
verdict = f"<div style='margin-top:12px;padding:14px 16px;background:#f9fafb;border:1px solid #e5e7eb;border-radius:14px'><b>Verdict:</b> {interp['verdict']}</div>"
|
| 346 |
+
return grid + verdict
|
| 347 |
+
|
| 348 |
+
def render_recs(interp: dict) -> str:
|
| 349 |
+
lis = "".join([f"<li>{r}</li>" for r in interp["recs"]])
|
| 350 |
+
return f"<ul>{lis}</ul>"
|
| 351 |
+
|
| 352 |
+
def render_columns(report: dict) -> str:
|
| 353 |
+
rows = []
|
| 354 |
for c, st in report.get("per_column", {}).items():
|
| 355 |
+
miss = report["missing_fraction_per_column"].get(c, 0.0)
|
| 356 |
if "entropy_binned_bits" in st:
|
| 357 |
+
rows.append(f"<tr><td><b>{c}</b> (num)</td><td>{miss:.1%}</td><td>{st['entropy_binned_bits']:.2f}</td><td>{st['monotone_runs']}</td><td>{st['run_entropy_bits']:.2f}</td><td>{st['sortedness_fraction']:.2f}</td></tr>")
|
|
|
|
|
|
|
| 358 |
elif "entropy_bits" in st:
|
| 359 |
+
rows.append(f"<tr><td><b>{c}</b> (cat)</td><td>{miss:.1%}</td><td>{st['entropy_bits']:.2f}</td><td>-</td><td>-</td><td>-</td></tr>")
|
|
|
|
| 360 |
else:
|
| 361 |
+
rows.append(f"<tr><td><b>{c}</b></td><td>{miss:.1%}</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>")
|
| 362 |
+
header = "<tr><th>Column</th><th>Missing</th><th>Entropy</th><th>Monotone Runs</th><th>Run-Entropy</th><th>Sortedness</th></tr>"
|
| 363 |
+
table = "<table style='width:100%;border-collapse:collapse'>"+header+"".join(rows)+"</table>"
|
| 364 |
+
# simple row borders
|
| 365 |
+
table = table.replace("<tr>", "<tr style='border-bottom:1px solid #e5e7eb'>")
|
| 366 |
+
table = table.replace("<th>", "<th style='text-align:left;padding:8px 6px;color:#374151'>")
|
| 367 |
+
table = table.replace("<td>", "<td style='padding:8px 6px;color:#111827'>")
|
| 368 |
+
return table
|
| 369 |
|
| 370 |
+
# -------------------------------
|
| 371 |
+
# Gradio app
|
| 372 |
+
# -------------------------------
|
| 373 |
def analyze(file):
|
| 374 |
if file is None:
|
| 375 |
+
return "{}", "Please upload a CSV.", "", ""
|
| 376 |
try:
|
| 377 |
df = pd.read_csv(file.name)
|
| 378 |
except Exception as e:
|
| 379 |
+
return "{}", f"Failed to read CSV: {e}", "", ""
|
| 380 |
+
|
| 381 |
report = compute_metrics(df)
|
| 382 |
+
interp = interpret_report(report)
|
|
|
|
| 383 |
|
| 384 |
+
report_json = json.dumps(report, indent=2)
|
| 385 |
+
dashboard_html = render_dashboard(report, interp)
|
| 386 |
+
recs_html = render_recs(interp)
|
| 387 |
+
cols_html = render_columns(report)
|
| 388 |
+
|
| 389 |
+
return report_json, dashboard_html, recs_html, cols_html
|
| 390 |
+
|
| 391 |
+
with gr.Blocks(title="OrderLens β Data Interpreter") as demo:
|
| 392 |
+
gr.Markdown("# OrderLens β Data Interpreter")
|
| 393 |
+
gr.Markdown("Upload a CSV and get **readable** structure metrics with plain-language guidance.")
|
| 394 |
with gr.Row():
|
| 395 |
+
inp = gr.File(file_types=[\".csv\"], label=\"CSV file\")
|
| 396 |
+
btn = gr.Button(\"Analyze\", variant=\"primary\")
|
| 397 |
+
gr.Markdown(\"---\")
|
| 398 |
+
gr.Markdown(\"### Dashboard\") # color-coded cards + verdict
|
| 399 |
+
dash = gr.HTML()
|
| 400 |
+
gr.Markdown(\"### Recommendations\") # actionable tips
|
| 401 |
+
recs = gr.HTML()
|
| 402 |
+
gr.Markdown(\"### Column Details\") # per-column table
|
| 403 |
+
cols = gr.HTML()
|
| 404 |
+
gr.Markdown(\"### Raw report (JSON)\") # API-friendly
|
| 405 |
+
json_out = gr.Code(label=\"Report\", language=\"json\")
|
| 406 |
+
|
| 407 |
+
btn.click(analyze, inputs=inp, outputs=[json_out, dash, recs, cols])
|
| 408 |
|
| 409 |
+
if __name__ == \"__main__\":
|
| 410 |
demo.launch()
|