File size: 9,353 Bytes
a7284df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import io, math, json, gzip, textwrap
import numpy as np
import pandas as pd
import gradio as gr

from typing import Dict, Any

# --- (Functions below are minimal clones to keep the Gradio app standalone) ---
def shannon_entropy_from_counts(counts: np.ndarray) -> float:
    counts = counts.astype(float)
    total = counts.sum()
    if total <= 0:
        return 0.0
    p = counts / total
    p = p[p > 0]
    return float(-(p * np.log2(p)).sum())

def numeric_binned_entropy(series: pd.Series, bins: int = 32):
    x = series.dropna().astype(float).values
    if x.size == 0:
        return 0.0, 0
    try:
        qs = np.linspace(0, 1, bins + 1)
        edges = np.unique(np.nanpercentile(x, qs * 100))
        if len(edges) < 2:
            edges = np.unique(x)
        hist, _ = np.histogram(x, bins=edges)
    except Exception:
        hist, _ = np.histogram(x, bins=bins)
    H = shannon_entropy_from_counts(hist)
    k = np.count_nonzero(hist)
    return H, max(k, 1)

def categorical_entropy(series: pd.Series):
    x = series.dropna().astype(str).values
    if x.size == 0:
        return 0.0, 0
    vals, counts = np.unique(x, return_counts=True)
    H = shannon_entropy_from_counts(counts)
    return H, len(vals)

def monotone_runs_and_entropy(series: pd.Series):
    x = series.dropna().values
    n = len(x)
    if n <= 1:
        return 1, 0.0
    runs = [1]
    for i in range(1, n):
        if x[i] >= x[i-1]:
            runs[-1] += 1
        else:
            runs.append(1)
    run_lengths = np.array(runs, dtype=float)
    H = shannon_entropy_from_counts(run_lengths)
    return len(runs), H

def sortedness_score(series: pd.Series) -> float:
    x = series.dropna().values
    if len(x) <= 1:
        return 1.0
    return float(np.mean(np.diff(x) >= 0))

def gzip_compress_ratio_from_bytes(b: bytes) -> float:
    if len(b) == 0:
        return 1.0
    out = io.BytesIO()
    with gzip.GzipFile(fileobj=out, mode="wb") as f:
        f.write(b)
    compressed = out.getvalue()
    return len(compressed) / len(b)

def dataframe_gzip_ratio(df: pd.DataFrame, max_rows: int = 20000) -> float:
    s = df.sample(min(len(df), max_rows), random_state=0) if len(df) > max_rows else df
    raw = s.to_csv(index=False).encode("utf-8", errors="ignore")
    return gzip_compress_ratio_from_bytes(raw)

def pareto_maxima_count(points: np.ndarray) -> int:
    if points.shape[1] < 2 or points.shape[0] == 0:
        return 0
    P = points[:, :2]
    order = np.lexsort((-P[:, 1], -P[:, 0]))
    best_y = -np.inf
    count = 0
    for idx in order:
        y = P[idx, 1]
        if y >= best_y:
            count += 1
            best_y = y
    return int(count)

def kd_entropy(points: np.ndarray, max_leaf: int = 128, axis: int = 0) -> float:
    n = points.shape[0]
    if n == 0:
        return 0.0
    if n <= max_leaf:
        return 0.0
    d = points.shape[1]
    vals = points[:, axis]
    med = np.median(vals)
    left = points[vals <= med]
    right = points[vals > med]
    pL = len(left) / n
    pR = len(right) / n
    H_here = 0.0
    for p in (pL, pR):
        if p > 0:
            H_here += -p * math.log(p, 2)
    next_axis = (axis + 1) % d
    return H_here + kd_entropy(left, max_leaf, next_axis) + kd_entropy(right, max_leaf, next_axis)

def normalize(value: float, max_value: float) -> float:
    if max_value <= 0:
        return 0.0
    v = max(0.0, min(1.0, value / max_value))
    return float(v)

def compute_metrics(df: pd.DataFrame):
    report = {}
    n_rows, n_cols = df.shape
    report["shape"] = {"rows": int(n_rows), "cols": int(n_cols)}

    # Types
    types = {}
    for c in df.columns:
        s = df[c]
        if pd.api.types.is_numeric_dtype(s):
            types[c] = "numeric"
        elif pd.api.types.is_datetime64_any_dtype(s) or "date" in str(s.dtype).lower():
            types[c] = "datetime"
        else:
            types[c] = "categorical"
    report["column_types"] = types

    missing = df.isna().mean().to_dict()
    dup_ratio = float((len(df) - len(df.drop_duplicates())) / max(1, len(df)))
    report["missing_fraction_per_column"] = {k: float(v) for k, v in missing.items()}
    report["duplicate_row_fraction"] = dup_ratio

    col_stats = {}
    for c in df.columns:
        s = df[c]
        if types[c] == "numeric":
            H, k = numeric_binned_entropy(s)
            runs, Hruns = monotone_runs_and_entropy(s)
            sorted_frac = sortedness_score(s)
            col_stats[c] = {
                "entropy_binned_bits": float(H),
                "active_bins": int(k),
                "monotone_runs": int(runs),
                "run_entropy_bits": float(Hruns),
                "sortedness_fraction": float(sorted_frac),
            }
        else:
            H, k = categorical_entropy(s)
            col_stats[c] = {"entropy_bits": float(H), "unique_values": int(k)}
    report["per_column"] = col_stats

    try:
        gzip_ratio = dataframe_gzip_ratio(df)
    except Exception:
        gzip_ratio = 1.0
    report["gzip_compression_ratio"] = float(gzip_ratio)

    num_cols = [c for c, t in types.items() if t == "numeric"]
    if len(num_cols) >= 2:
        X = df[num_cols].select_dtypes(include=[np.number]).values.astype(float)
        X = X[~np.isnan(X).any(axis=1)]
        if X.shape[0] >= 3:
            pts2 = X[:, :2]
            report["pareto_maxima_2d"] = int(pareto_maxima_count(pts2))
            try:
                H_kd = kd_entropy(pts2, max_leaf=128, axis=0)
            except Exception:
                H_kd = 0.0
            report["kd_partition_entropy_bits"] = float(H_kd)
        else:
            report["pareto_maxima_2d"] = 0
            report["kd_partition_entropy_bits"] = 0.0
    else:
        report["pareto_maxima_2d"] = 0
        report["kd_partition_entropy_bits"] = 0.0

    max_bits = math.log2(max(2, n_rows))
    he_parts = []
    he_parts.append(1.0 - max(0.0, min(1.0, report["gzip_compression_ratio"])))
    num_run_entropies = []
    for c in df.columns:
        st = col_stats.get(c, {})
        if "run_entropy_bits" in st:
            num_run_entropies.append(st["run_entropy_bits"])
    if num_run_entropies:
        mean_run_H = float(np.mean(num_run_entropies))
        he_parts.append(1.0 - normalize(mean_run_H, max_bits))
    H_kd = report.get("kd_partition_entropy_bits", 0.0)
    if H_kd is not None:
        he_parts.append(1.0 - normalize(float(H_kd), max_bits))
    if he_parts:
        HE = float(np.mean([max(0.0, min(1.0, v)) for v in he_parts]))
    else:
        HE = 0.0
    report["harvestable_energy_score"] = HE

    return report

def explain_report(report: Dict[str, Any]) -> str:
    lines = []
    r, c = report["shape"]["rows"], report["shape"]["cols"]
    lines.append(f"**Dataset shape:** {r} rows × {c} columns.")
    g = report.get("gzip_compression_ratio", None)
    if g is not None:
        lines.append(f"**Global compressibility (gzip ratio):** {g:.3f}. Lower = more structure.")
    he = report.get("harvestable_energy_score", 0.0)
    he_pct = int(100 * he)
    lines.append(f"**Harvestable Energy (0–100):** ~{he_pct}. Higher = more exploitable order.")
    pm = report.get("pareto_maxima_2d", None)
    if pm is not None:
        lines.append(f"**2D Pareto maxima (first two numeric cols):** {pm}.")
    Hkd = report.get("kd_partition_entropy_bits", None)
    if Hkd is not None:
        lines.append(f"**Range-partition entropy (kd approx):** {Hkd:.3f} bits.")
    lines.append("\\n**Column-level:**")
    for c, st in report.get("per_column", {}).items():
        m = report["missing_fraction_per_column"].get(c, 0.0)
        if "entropy_binned_bits" in st:
            lines.append(f"- **{c}** (numeric): missing {m:.1%}, binned entropy {st['entropy_binned_bits']:.2f} bits, "
                         f"{st['monotone_runs']} runs (run-entropy {st['run_entropy_bits']:.2f} bits), "
                         f"sortedness {st['sortedness_fraction']:.2f}.")
        elif "entropy_bits" in st:
            lines.append(f"- **{c}** (categorical): missing {m:.1%}, entropy {st['entropy_bits']:.2f} bits, "
                         f"{st['unique_values']} unique.")
        else:
            lines.append(f"- **{c}**: missing {m:.1%}.")
    lines.append("\\n**Tips:** Higher energy and lower entropies often allow near-linear algorithms (run-aware sorts, hull scans, envelope merges).")
    return "\\n".join(lines)

def analyze(file):
    if file is None:
        return "Please upload a CSV.", ""
    try:
        df = pd.read_csv(file.name)
    except Exception as e:
        return f"Failed to read CSV: {e}", ""
    report = compute_metrics(df)
    md = explain_report(report)
    return json.dumps(report, indent=2), md

with gr.Blocks(title="Dataset Energy & Entropy Analyzer") as demo:
    gr.Markdown("# Dataset Energy & Entropy Analyzer\nUpload a CSV to compute dataset structure metrics (entropy, runs, compressibility, kd-entropy) and an overall **Harvestable Energy** score.")
    with gr.Row():
        inp = gr.File(file_types=[".csv"], label="CSV file")
    with gr.Row():
        btn = gr.Button("Analyze", variant="primary")
    with gr.Row():
        json_out = gr.Code(label="Raw report (JSON)", language="json")
    md_out = gr.Markdown()
    btn.click(analyze, inputs=inp, outputs=[json_out, md_out])

if __name__ == "__main__":
    demo.launch()