Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import enum | |
| import gradio as gr | |
| from huggingface_hub import HfApi | |
| from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget | |
| from inference import InferencePipeline | |
| from utils import find_exp_dirs | |
| class ModelSource(enum.Enum): | |
| HUB_LIB = UploadTarget.MODEL_LIBRARY.value | |
| LOCAL = 'Local' | |
| class InferenceUtil: | |
| def __init__(self, hf_token: str | None): | |
| self.hf_token = hf_token | |
| def load_hub_model_list(self) -> dict: | |
| api = HfApi(token=self.hf_token) | |
| choices = [ | |
| info.modelId | |
| for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME) | |
| ] | |
| return gr.update(choices=choices, | |
| value=choices[0] if choices else None) | |
| def load_local_model_list() -> dict: | |
| choices = find_exp_dirs() | |
| return gr.update(choices=choices, | |
| value=choices[0] if choices else None) | |
| def reload_model_list(self, model_source: str) -> dict: | |
| if model_source == ModelSource.HUB_LIB.value: | |
| return self.load_hub_model_list() | |
| elif model_source == ModelSource.LOCAL.value: | |
| return self.load_local_model_list() | |
| else: | |
| raise ValueError | |
| def load_model_info(self, model_id: str) -> tuple[str, str]: | |
| try: | |
| card = InferencePipeline.get_model_card(model_id, self.hf_token) | |
| except Exception: | |
| return '', '' | |
| base_model = getattr(card.data, 'base_model', '') | |
| training_prompt = getattr(card.data, 'training_prompt', '') | |
| return base_model, training_prompt | |
| def reload_model_list_and_update_model_info( | |
| self, model_source: str) -> tuple[dict, str, str]: | |
| model_list_update = self.reload_model_list(model_source) | |
| model_list = model_list_update['choices'] | |
| model_info = self.load_model_info(model_list[0] if model_list else '') | |
| return model_list_update, *model_info | |
| def create_inference_demo(pipe: InferencePipeline, | |
| hf_token: str | None = None) -> gr.Blocks: | |
| app = InferenceUtil(hf_token) | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Box(): | |
| model_source = gr.Radio( | |
| label='Model Source', | |
| choices=[_.value for _ in ModelSource], | |
| value=ModelSource.HUB_LIB.value) | |
| reload_button = gr.Button('Reload Model List') | |
| model_id = gr.Dropdown(label='Model ID', | |
| choices=None, | |
| value=None) | |
| with gr.Accordion( | |
| label= | |
| 'Model info (Base model and prompt used for training)', | |
| open=False): | |
| with gr.Row(): | |
| base_model_used_for_training = gr.Text( | |
| label='Base model', interactive=False) | |
| prompt_used_for_training = gr.Text( | |
| label='Training prompt', interactive=False) | |
| prompt = gr.Textbox( | |
| label='Prompt', | |
| max_lines=1, | |
| placeholder='Example: "A panda is surfing"') | |
| video_length = gr.Slider(label='Video length', | |
| minimum=4, | |
| maximum=12, | |
| step=1, | |
| value=8) | |
| fps = gr.Slider(label='FPS', | |
| minimum=1, | |
| maximum=12, | |
| step=1, | |
| value=1) | |
| seed = gr.Slider(label='Seed', | |
| minimum=0, | |
| maximum=100000, | |
| step=1, | |
| value=0) | |
| with gr.Accordion('Other Parameters', open=False): | |
| num_steps = gr.Slider(label='Number of Steps', | |
| minimum=0, | |
| maximum=100, | |
| step=1, | |
| value=50) | |
| guidance_scale = gr.Slider(label='CFG Scale', | |
| minimum=0, | |
| maximum=50, | |
| step=0.1, | |
| value=7.5) | |
| run_button = gr.Button('Generate') | |
| gr.Markdown(''' | |
| - After training, you can press "Reload Model List" button to load your trained model names. | |
| - It takes a few minutes to download model first. | |
| - Expected time to generate an 8-frame video: 24 seconds with A10G, 70 seconds with T4, (10 seconds with A100) | |
| ''') | |
| with gr.Column(): | |
| result = gr.Video(label='Result') | |
| model_source.change(fn=app.reload_model_list_and_update_model_info, | |
| inputs=model_source, | |
| outputs=[ | |
| model_id, | |
| base_model_used_for_training, | |
| prompt_used_for_training, | |
| ]) | |
| reload_button.click(fn=app.reload_model_list_and_update_model_info, | |
| inputs=model_source, | |
| outputs=[ | |
| model_id, | |
| base_model_used_for_training, | |
| prompt_used_for_training, | |
| ]) | |
| model_id.change(fn=app.load_model_info, | |
| inputs=model_id, | |
| outputs=[ | |
| base_model_used_for_training, | |
| prompt_used_for_training, | |
| ]) | |
| inputs = [ | |
| model_id, | |
| prompt, | |
| video_length, | |
| fps, | |
| seed, | |
| num_steps, | |
| guidance_scale, | |
| ] | |
| prompt.submit(fn=pipe.run, inputs=inputs, outputs=result) | |
| run_button.click(fn=pipe.run, inputs=inputs, outputs=result) | |
| return demo | |
| if __name__ == '__main__': | |
| import os | |
| hf_token = os.getenv('HF_TOKEN') | |
| pipe = InferencePipeline(hf_token) | |
| demo = create_inference_demo(pipe, hf_token) | |
| demo.queue(max_size=10).launch(share=False) | |