Spaces:
Sleeping
Sleeping
File size: 1,624 Bytes
17a77b6 35cccae 1ad37d2 35cccae 1ad37d2 35cccae 1ad37d2 35cccae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
title: WatchTowerAI - Log Analyzer
emoji: 🛰️
colorFrom: purple
colorTo: pink
sdk: streamlit
sdk_version: "1.32.0"
app_file: streamlit_app.py
pinned: false
---
# WatchTowerAI – Log Classification & Automated Runbook Generator
A production-grade AI tool to analyze logs in real-time, classify them using a fine-tuned Flan-T5 model, generate markdown runbooks, and automatically alert your team via Slack — all deployed on Hugging Face Spaces.
## Features
- **LLM-powered log classification** (INFO, WARNING, ERROR, CRITICAL, SECURITY)
- **Runbook generation** using Flan-T5
- **Upload runbooks to AWS S3**
- **Send real-time Slack alerts**
- Hybrid fallback using rule-based logic if model is uncertain
- Streamlit Web UI + `.log` file upload support
## Tech Stack
- LLM: Fine-tuned [Flan-T5](https://huggingface.co/google/flan-t5)
- Frontend: Streamlit
- Cloud: AWS S3
- Alerts: Slack Webhook
- Deployment: Hugging Face Spaces
## Screenshot

## How to Use
1. Paste or upload a `.log` file
2. Click “Classify + Generate Runbook”
3. Download the markdown or view it in S3
4. Slack alerts will be sent automatically
## Directory
- `streamlit_app.py` – UI + logic
- `upload_to_s3.py` – S3 upload function
- `notify_slack.py` – Slack integration
- `runbooks/` – Markdown output folder
- `codementor-flan/` – Your fine-tuned model folder
## AI Model
Fine-tuned on domain-specific QA + system logs using Flan-T5 for robust multi-class log categorization and response generation.
---
Made by [Chetan](https://github.com/chetan10510)
|