Spaces:
Running
Running
File size: 3,957 Bytes
4de8fd3 57998d7 a10ed5c 57998d7 5b7126d 5467249 4de8fd3 4ef8a52 c0a1eea abe071a c0a1eea 087827a 5b7126d c0a1eea 5b7126d 86668bc 82fa495 5467249 8598810 5467249 8598810 5467249 5b7126d 4ef8a52 087827a 5b7126d c0a1eea 2ad73ca 5b7126d 2ad73ca 5b7126d b6ac152 087827a 2163596 c0a1eea 5b7126d b802d0f 5b7126d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import streamlit as st
from haystack.utils import fetch_archive_from_http, clean_wiki_text, convert_files_to_docs
from haystack.schema import Answer
from haystack.document_stores import InMemoryDocumentStore
from haystack.pipelines import ExtractiveQAPipeline
from haystack.nodes import FARMReader, TfidfRetriever
import logging
from markdown import markdown
from annotated_text import annotation
from PIL import Image
#Haystack Components
@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},allow_output_mutation=True)
def start_haystack():
document_store = InMemoryDocumentStore()
load_and_write_data(document_store)
retriever = TfidfRetriever(document_store=document_store)
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-distilled", use_gpu=True)
pipeline = ExtractiveQAPipeline(reader, retriever)
return pipeline
def load_and_write_data(document_store):
doc_dir = './article_txt_got'
docs = convert_files_to_docs(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True)
document_store.write_documents(docs)
pipeline = start_haystack()
def set_state_if_absent(key, value):
if key not in st.session_state:
st.session_state[key] = value
set_state_if_absent("question", "Who is Arya's father?")
set_state_if_absent("results", None)
def reset_results(*args):
st.session_state.results = None
#Streamlit App
st.title('Haystack Game of Thrones QA ')
image = Image.open('got-haystack.png')
st.image(image)
st.markdown( """
This QA demo uses a [Haystack Extractive QA Pipeline](https://haystack.deepset.ai/components/ready-made-pipelines#extractiveqapipeline) with
an [InMemoryDocumentStore](https://haystack.deepset.ai/components/document-store) which contains documents about Game of Thrones π
Go ahead and ask questions about the marvellous kingdom!
""", unsafe_allow_html=True)
question = st.text_input("", value=st.session_state.question, max_chars=100, on_change=reset_results)
def ask_question(question):
prediction = pipeline.run(query=question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}})
results = []
for answer in prediction["answers"]:
answer = answer.to_dict()
if answer["answer"]:
results.append(
{
"context": "..." + answer["context"] + "...",
"answer": answer["answer"],
"relevance": round(answer["score"] * 100, 2),
"offset_start_in_doc": answer["offsets_in_document"][0]["start"],
}
)
else:
results.append(
{
"context": None,
"answer": None,
"relevance": round(answer["score"] * 100, 2),
}
)
return results
if question:
with st.spinner("π Performing semantic search on royal scripts..."):
try:
msg = 'Asked ' + question
logging.info(msg)
st.session_state.results = ask_question(question)
except Exception as e:
logging.exception(e)
if st.session_state.results:
st.write('## Top Results')
for count, result in enumerate(st.session_state.results):
if result["answer"]:
answer, context = result["answer"], result["context"]
start_idx = context.find(answer)
end_idx = start_idx + len(answer)
st.write(
markdown(context[:start_idx] + str(annotation(body=answer, label="ANSWER", background="#964448", color='#ffffff')) + context[end_idx:]),
unsafe_allow_html=True,
)
st.markdown(f"**Relevance:** {result['relevance']}")
else:
st.info(
"π€ Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!"
)
|