Spaces:
Running
Running
<html> | |
<head> | |
<meta charset="utf-8"> | |
<meta name="description" | |
content="NeuralFuse provides model-independent protection for AI accelerators built on a chip, allowing them to maintain stable performance when suffering low-voltage-induced bit errors."> | |
<meta name="keywords" content="machine learning, energy efficient inference, bit error resilience"> | |
<meta name="viewport" content="width=device-width, initial-scale=1"> | |
<title>NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes</title> | |
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" | |
rel="stylesheet"> | |
<link rel="stylesheet" href="./static/css/bulma.min.css"> | |
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css"> | |
<link rel="stylesheet" href="./static/css/bulma-slider.min.css"> | |
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css"> | |
<link rel="stylesheet" | |
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css"> | |
<link rel="stylesheet" href="./static/css/index.css"> | |
<link rel="apple-touch-icon" sizes="180x180" href="./static/images/favicon/apple-touch-icon.png"> | |
<link rel="icon" type="image/png" sizes="32x32" href="./static/images/favicon/favicon-32x32.png"> | |
<link rel="icon" type="image/png" sizes="16x16" href="./static/images/favicon/favicon-16x16.png"> | |
<link rel="manifest" href="./static/images/favicon/site.webmanifest"> | |
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> | |
<script defer src="./static/js/fontawesome.all.min.js"></script> | |
<script src="./static/js/bulma-carousel.min.js"></script> | |
<script src="./static/js/bulma-slider.min.js"></script> | |
<script src="./static/js/index.js"></script> | |
</head> | |
<body> | |
<section class="hero"> | |
<div class="hero-body"> | |
<div class="container is-max-desktop"> | |
<div class="columns is-centered"> | |
<div class="column has-text-centered"> | |
<h1 class="title is-1 publication-title">✨NeuralFuse✨</h1> | |
<h1 class="title publication-subtitle">Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes</h1> | |
<div class="is-size-5 publication-authors"> | |
<span class="author-block"> | |
<a href="https://scholar.google.com/citations?user=g2MolmMAAAAJ&hl=en" target="_blank">Hao-Lun Sun</a><sup>1</sup>,</span> | |
<span class="author-block"> | |
<a href="https://hsiung.cc" target="_blank">Lei Hsiung</a><sup>2</sup>,</span> | |
<span class="author-block"> | |
<a href="https://scholar.google.com/citations?user=qurg568AAAAJ&hl=en" target="_blank">Nandhini Chandramoorthy</a><sup>3</sup>, | |
</span> | |
<span class="author-block"> | |
<a href="https://sites.google.com/site/pinyuchenpage/home" target="_blank">Pin-Yu Chen</a><sup>3</sup>, | |
</span> | |
<span class="author-block"> | |
<a href="https://tsungyiho.github.io" target="_blank">Tsung-Yi Ho</a><sup>4</sup>, | |
</span> | |
</div> | |
<div class="is-size-5 publication-authors"> | |
<span class="author-block"><sup>1</sup>National Tsing Hua University</span> | |
<span class="author-block"><sup>2</sup>Dartmouth College</span> | |
<span class="author-block"><sup>3</sup>IBM Research</span> | |
<span class="author-block"><sup>4</sup>CUHK</span> | |
</div> | |
<div class="column has-text-centered"> | |
<div class="publication-links"> | |
<span class="link-block"> | |
<a href="https://arxiv.org/abs/2306.16869" target="_blank" | |
class="external-link button is-normal is-rounded is-dark"> | |
<span class="icon"> | |
<i class="ai ai-arxiv"></i> | |
</span> | |
<span>arXiv</span> | |
</a> | |
</span> | |
<!-- Code Link. --> | |
<span class="link-block"> | |
<a href="https://github.com/IBM/NeuralFuse" target="_blank" | |
class="external-link button is-normal is-rounded is-dark"> | |
<span class="icon"> | |
<i class="fab fa-github"></i> | |
</span> | |
<span>Code</span> | |
</a> | |
</span> | |
</div> | |
</div> | |
</div> | |
</div> | |
</div> | |
</div> | |
</section> | |
<section class="hero teaser"> | |
<div class="container is-max-desktop"> | |
<div class="hero-body"> | |
<img id="teaser" src="./static/images/teaser.png" | |
class="" | |
alt="NeuralFuse Teaser"/> | |
<h2 class="subtitle has-text-centered"> | |
The pipeline of the <span class="small_caps">NeuralFuse</span> framework at inference. | |
</h2> | |
</div> | |
</div> | |
</section> | |
<section class="section"> | |
<div class="container is-max-desktop"> | |
<!-- Abstract. --> | |
<div class="columns is-centered has-text-centered"> | |
<div class="column is-four-fifths"> | |
<h2 class="title is-3">Abstract</h2> | |
<div class="content has-text-justified"> | |
<p> | |
Deep neural networks (DNNs) have become ubiquitous in machine learning, but their energy consumption remains problematically high. An effective strategy for reducing such consumption is supply-voltage reduction, but if done too aggressively, it can lead to accuracy degradation. This is due to random bit-flips in static random access memory (SRAM), where model parameters are stored. | |
</p> | |
<p> | |
To address this challenge, we have developed <span class="small_caps">NeuralFuse</span>, a novel add-on module that handles the energy-accuracy tradeoff in low-voltage regimes by learning input transformations and using them to generate error-resistant data representations, thereby protecting DNN accuracy in both nominal and low-voltage scenarios. As well as being easy to implement, NeuralFuse can be readily applied to DNNs with limited access, such cloud-based APIs that are accessed remotely or non-configurable hardware. Our experimental results demonstrate that, at a 1% bit-error rate, NeuralFuse can reduce SRAM access energy by up to 24% while recovering accuracy by up to 57%. To the best of our knowledge, this is the first approach to addressing low-voltage-induced bit errors that requires no model retraining. | |
</p> | |
</div> | |
</div> | |
</div> | |
<!--/ Abstract. --> | |
</div> | |
</section> | |
<section class="section"> | |
<div class="container is-max-desktop"> | |
<div class="columns is-centered"> | |
<div class="column is-full-width"> | |
<h2 class="title is-3">Our Contributions</h2> | |
<div class="content has-text-justified highlight-box"> | |
<p><span class="contribution-subtitle">Boosts DNN Accuracy Under Low Power</span> | |
<span class="small_caps">NeuralFuse</span> improves the accuracy of deep neural networks (DNNs) operating in low-power environments with random bit errors, without needing to retrain the models. | |
</p> | |
</div> | |
<div class="content has-text-justified highlight-box"> | |
<p><span class="contribution-subtitle">Protects DNN Accuracy Under Unstable Power</span> | |
<span class="small_caps">NeuralFuse</span> improves the accuracy of deep neural networks (DNNs) operating in low-power environments with random bit errors, without needing to retrain the models. | |
</p> | |
</div> | |
<div class="content has-text-justified highlight-box"> | |
<p><span class="contribution-subtitle">Adapts to Limited-Access Settings</span> | |
<span class="small_caps">NeuralFuse</span> supports deployment in scenarios with limited access to model details, using flexible training methods to adapt effectively across diverse DNN architectures. | |
</p> | |
</div> | |
<div class="content has-text-justified highlight-box"> | |
<p><span class="contribution-subtitle">Reduces Energy Use with Proven Performance</span> | |
<span class="small_caps">NeuralFuse</span> recovers up to 57% of lost accuracy and reduces memory access energy by up to 24%, tested across diverse models (ResNet18, ResNet50, VGG11, VGG16, and VGG19) and datasets (CIFAR-10, CIFAR-100, GTSRB, and ImageNet-10). | |
</p> | |
</div> | |
</div> | |
</div> | |
</div> | |
</section> | |
<section class="section"> | |
<div class="container is-max-desktop"> | |
<div class="columns is-centered"> | |
<div class="column is-full-width"> | |
<h2 class="title is-3">NeuralFuse Performance</h2> | |
<h3 class="title is-4">Energy/Accuracy Tradeoff</h3> | |
<div class="content has-text-justified"> | |
<p> | |
On the same base model (ResNet18), we illustrate the energy/accuracy tradeoff of six NeuralFuse implementations. | |
The x-axis represents the percentage reduction in dynamic-memory access energy at low-voltage settings (base model protected by NeuralFuse), as compared to the bit-error-free (nominal) voltage. The y-axis represents the perturbed accuracy (evaluated at low voltage) with a 1% bit-error rate. | |
</p> | |
</div> | |
<img id="performance" src="./static/images/performance.png" | |
class="" | |
alt="NeuralFuse Performance"/> | |
</div> | |
</div> | |
</div> | |
</section> | |
<section class="section" id="BibTeX"> | |
<div class="container is-max-desktop content"> | |
<h2 class="title">BibTeX</h2> | |
<pre><code>@inproceedings{sun2024neuralfuse, | |
title={{NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes}}, | |
author={Hao-Lun Sun and Lei Hsiung and Nandhini Chandramoorthy and Pin-Yu Chen and Tsung-Yi Ho}, | |
booktitle = {Advances in Neural Information Processing Systems}, | |
publisher = {Curran Associates, Inc.}, | |
volume = {37}, | |
year = {2024} | |
}</code></pre> | |
</div> | |
</section> | |
<footer class="footer"> | |
<div class="container"> | |
<div class="content has-text-centered"> | |
<a class="icon-link" href="https://arxiv.org/abs/2306.16869" target="_blank" class="external-link"> | |
<i class="fas fa-file-pdf"></i> | |
</a> | |
<a class="icon-link" href="https://github.com/IBM/NeuralFuse" target="_blank" class="external-link"> | |
<i class="fab fa-github"></i> | |
</a> | |
</div> | |
<div class="columns is-centered"> | |
<div class="column is-8"> | |
<div class="content"> | |
<p> | |
This page is maintained by <a target="_blank" href="https://hsiung.cc">Lei Hsiung</a>. Page template is borrowed from <a target="_blank" rel="nofollow" href="https://github.com/nerfies/nerfies.github.io">here</a>. | |
</p> | |
</div> | |
</div> | |
</div> | |
</div> | |
</footer> | |
</body> | |
</html> | |