NeuralFuse / index.html
hsiung's picture
initial commit
a767b82
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="NeuralFuse provides model-independent protection for AI accelerators built on a chip, allowing them to maintain stable performance when suffering low-voltage-induced bit errors.">
<meta name="keywords" content="machine learning, energy efficient inference, bit error resilience">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes</title>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="apple-touch-icon" sizes="180x180" href="./static/images/favicon/apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="./static/images/favicon/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="./static/images/favicon/favicon-16x16.png">
<link rel="manifest" href="./static/images/favicon/site.webmanifest">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">✨NeuralFuse✨</h1>
<h1 class="title publication-subtitle">Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://scholar.google.com/citations?user=g2MolmMAAAAJ&hl=en" target="_blank">Hao-Lun Sun</a><sup>1</sup>,</span>
<span class="author-block">
<a href="https://hsiung.cc" target="_blank">Lei Hsiung</a><sup>2</sup>,</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=qurg568AAAAJ&hl=en" target="_blank">Nandhini Chandramoorthy</a><sup>3</sup>,
</span>
<span class="author-block">
<a href="https://sites.google.com/site/pinyuchenpage/home" target="_blank">Pin-Yu Chen</a><sup>3</sup>,
</span>
<span class="author-block">
<a href="https://tsungyiho.github.io" target="_blank">Tsung-Yi Ho</a><sup>4</sup>,
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>National Tsing Hua University</span>
<span class="author-block"><sup>2</sup>Dartmouth College</span>
<span class="author-block"><sup>3</sup>IBM Research</span>
<span class="author-block"><sup>4</sup>CUHK</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<span class="link-block">
<a href="https://arxiv.org/abs/2306.16869" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/IBM/NeuralFuse" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<img id="teaser" src="./static/images/teaser.png"
class=""
alt="NeuralFuse Teaser"/>
<h2 class="subtitle has-text-centered">
The pipeline of the <span class="small_caps">NeuralFuse</span> framework at inference.
</h2>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Deep neural networks (DNNs) have become ubiquitous in machine learning, but their energy consumption remains problematically high. An effective strategy for reducing such consumption is supply-voltage reduction, but if done too aggressively, it can lead to accuracy degradation. This is due to random bit-flips in static random access memory (SRAM), where model parameters are stored.
</p>
<p>
To address this challenge, we have developed <span class="small_caps">NeuralFuse</span>, a novel add-on module that handles the energy-accuracy tradeoff in low-voltage regimes by learning input transformations and using them to generate error-resistant data representations, thereby protecting DNN accuracy in both nominal and low-voltage scenarios. As well as being easy to implement, NeuralFuse can be readily applied to DNNs with limited access, such cloud-based APIs that are accessed remotely or non-configurable hardware. Our experimental results demonstrate that, at a 1% bit-error rate, NeuralFuse can reduce SRAM access energy by up to 24% while recovering accuracy by up to 57%. To the best of our knowledge, this is the first approach to addressing low-voltage-induced bit errors that requires no model retraining.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-full-width">
<h2 class="title is-3">Our Contributions</h2>
<div class="content has-text-justified highlight-box">
<p><span class="contribution-subtitle">Boosts DNN Accuracy Under Low Power</span>
<span class="small_caps">NeuralFuse</span> improves the accuracy of deep neural networks (DNNs) operating in low-power environments with random bit errors, without needing to retrain the models.
</p>
</div>
<div class="content has-text-justified highlight-box">
<p><span class="contribution-subtitle">Protects DNN Accuracy Under Unstable Power</span>
<span class="small_caps">NeuralFuse</span> improves the accuracy of deep neural networks (DNNs) operating in low-power environments with random bit errors, without needing to retrain the models.
</p>
</div>
<div class="content has-text-justified highlight-box">
<p><span class="contribution-subtitle">Adapts to Limited-Access Settings</span>
<span class="small_caps">NeuralFuse</span> supports deployment in scenarios with limited access to model details, using flexible training methods to adapt effectively across diverse DNN architectures.
</p>
</div>
<div class="content has-text-justified highlight-box">
<p><span class="contribution-subtitle">Reduces Energy Use with Proven Performance</span>
<span class="small_caps">NeuralFuse</span> recovers up to 57% of lost accuracy and reduces memory access energy by up to 24%, tested across diverse models (ResNet18, ResNet50, VGG11, VGG16, and VGG19) and datasets (CIFAR-10, CIFAR-100, GTSRB, and ImageNet-10).
</p>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-full-width">
<h2 class="title is-3">NeuralFuse Performance</h2>
<h3 class="title is-4">Energy/Accuracy Tradeoff</h3>
<div class="content has-text-justified">
<p>
On the same base model (ResNet18), we illustrate the energy/accuracy tradeoff of six NeuralFuse implementations.
The x-axis represents the percentage reduction in dynamic-memory access energy at low-voltage settings (base model protected by NeuralFuse), as compared to the bit-error-free (nominal) voltage. The y-axis represents the perturbed accuracy (evaluated at low voltage) with a 1% bit-error rate.
</p>
</div>
<img id="performance" src="./static/images/performance.png"
class=""
alt="NeuralFuse Performance"/>
</div>
</div>
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@inproceedings{sun2024neuralfuse,
title={{NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes}},
author={Hao-Lun Sun and Lei Hsiung and Nandhini Chandramoorthy and Pin-Yu Chen and Tsung-Yi Ho},
booktitle = {Advances in Neural Information Processing Systems},
publisher = {Curran Associates, Inc.},
volume = {37},
year = {2024}
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<a class="icon-link" href="https://arxiv.org/abs/2306.16869" target="_blank" class="external-link">
<i class="fas fa-file-pdf"></i>
</a>
<a class="icon-link" href="https://github.com/IBM/NeuralFuse" target="_blank" class="external-link">
<i class="fab fa-github"></i>
</a>
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This page is maintained by <a target="_blank" href="https://hsiung.cc">Lei Hsiung</a>. Page template is borrowed from <a target="_blank" rel="nofollow" href="https://github.com/nerfies/nerfies.github.io">here</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>