import math import numpy as np import torch from matplotlib import pyplot as plt from torchvision.utils import make_grid def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): """Convert torch Tensors into image numpy arrays. After clamping to (min, max), image values will be normalized to [0, 1]. For different tensor shapes, this function will have different behaviors: 1. 4D mini-batch Tensor of shape (N x 3/1 x H x W): Use `make_grid` to stitch images in the batch dimension, and then convert it to numpy array. 2. 3D Tensor of shape (3/1 x H x W) and 2D Tensor of shape (H x W): Directly change to numpy array. Note that the image channel in input tensors should be RGB order. This function will convert it to cv2 convention, i.e., (H x W x C) with BGR order. Args: tensor (Tensor | list[Tensor]): Input tensors. out_type (numpy type): Output types. If ``np.uint8``, transform outputs to uint8 type with range [0, 255]; otherwise, float type with range [0, 1]. Default: ``np.uint8``. min_max (tuple): min and max values for clamp. Returns: (Tensor | list[Tensor]): 3D ndarray of shape (H x W x C) or 2D ndarray of shape (H x W). """ if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): raise TypeError( f'tensor or list of tensors expected, got {type(tensor)}') if torch.is_tensor(tensor): tensor = [tensor] result = [] for _tensor in tensor: # Squeeze two times so that: # 1. (1, 1, h, w) -> (h, w) or # 3. (1, 3, h, w) -> (3, h, w) or # 2. (n>1, 3/1, h, w) -> (n>1, 3/1, h, w) _tensor = _tensor.squeeze(0).squeeze(0) _tensor = _tensor.float().detach().cpu().clamp_(*min_max) _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) n_dim = _tensor.dim() if n_dim == 4: img_np = make_grid( _tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) elif n_dim == 3: img_np = _tensor.numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) elif n_dim == 2: img_np = _tensor.numpy() else: raise ValueError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}') if out_type == np.uint8: # Unlike MATLAB, numpy.unit8() WILL NOT round by default. img_np = (img_np * 255.0).round() img_np = img_np.astype(out_type) result.append(img_np) result = result[0] if len(result) == 1 else result return result def plt_tensor_img(tensor, save_path=None): plt.imshow(tensor2img(tensor)) plt.show() if save_path: plt.savefig(save_path) def plt_tensor_img_one(tensor, t_dim=1): if isinstance(tensor, list): tensor = torch.cat(tensor, dim=t_dim) nums = tensor.shape[t_dim] mash = math.ceil(math.sqrt(nums)) plt.figure(dpi=300) plt_range = min(nums, mash ** 2) for i in range(plt_range): plt.subplot(mash, mash, i + 1) if t_dim == 1: img = tensor2img(tensor[:, i, ...]) elif t_dim == 0: img = tensor2img(tensor[i, ...]) plt.imshow(img) plt.xticks([]) plt.yticks([]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() plt.show() def plt_img(img, save_path=None): plt.imshow(img) plt.show() if save_path: plt.savefig(save_path)