Spaces:
Runtime error
Runtime error
from inspect import isfunction | |
from torch import nn | |
from torch.nn import init | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def cycle(dl): | |
while True: | |
for data in dl: | |
yield data | |
def num_to_groups(num, divisor): | |
groups = num // divisor | |
remainder = num % divisor | |
arr = [divisor] * groups | |
if remainder > 0: | |
arr.append(remainder) | |
return arr | |
def initialize_weights(net_l, scale=0.1): | |
if not isinstance(net_l, list): | |
net_l = [net_l] | |
for net in net_l: | |
for m in net.modules(): | |
if isinstance(m, nn.Conv2d): | |
init.kaiming_normal_(m.weight, a=0, mode='fan_in') | |
m.weight.data *= scale # for residual block | |
if m.bias is not None: | |
m.bias.data.zero_() | |
elif isinstance(m, nn.Linear): | |
init.kaiming_normal_(m.weight, a=0, mode='fan_in') | |
m.weight.data *= scale | |
if m.bias is not None: | |
m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d): | |
init.constant_(m.weight, 1) | |
init.constant_(m.bias.data, 0.0) | |
def make_layer(block, n_layers, seq=False): | |
layers = [] | |
for _ in range(n_layers): | |
layers.append(block()) | |
if seq: | |
return nn.Sequential(*layers) | |
else: | |
return nn.ModuleList(layers) | |