Spaces:
Runtime error
Runtime error
File size: 13,009 Bytes
193c713 e9b996f 193c713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from functools import partial
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm
from sam_diffsr.utils_sr.plt_img import plt_tensor_img
from .module_util import default
from sam_diffsr.utils_sr.sr_utils import SSIM
from sam_diffsr.utils_sr.hparams import hparams
# gaussian diffusion trainer class
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac):
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
warmup_time = int(num_diffusion_timesteps * warmup_frac)
betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64)
return betas
def get_beta_schedule(num_diffusion_timesteps, beta_schedule='linear', beta_start=0.0001, beta_end=0.02):
if beta_schedule == 'quad':
betas = np.linspace(beta_start ** 0.5, beta_end ** 0.5, num_diffusion_timesteps, dtype=np.float64) ** 2
elif beta_schedule == 'linear':
betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64)
elif beta_schedule == 'warmup10':
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1)
elif beta_schedule == 'warmup50':
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5)
elif beta_schedule == 'const':
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
elif beta_schedule == 'jsd': # 1/T, 1/(T-1), 1/(T-2), ..., 1
betas = 1. / np.linspace(num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64)
else:
raise NotImplementedError(beta_schedule)
assert betas.shape == (num_diffusion_timesteps,)
return betas
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return np.clip(betas, a_min=0, a_max=0.999)
class GaussianDiffusion(nn.Module):
def __init__(self, denoise_fn, rrdb_net, timesteps=1000, loss_type='l1'):
super().__init__()
self.denoise_fn = denoise_fn
# condition net
self.rrdb = rrdb_net
self.ssim_loss = SSIM(window_size=11)
if hparams['beta_schedule'] == 'cosine':
betas = cosine_beta_schedule(timesteps, s=hparams['beta_s'])
if hparams['beta_schedule'] == 'linear':
betas = get_beta_schedule(timesteps, beta_end=hparams['beta_end'])
if hparams['res']:
betas[-1] = 0.999
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.loss_type = loss_type
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
self.sample_tqdm = True
self.mask_coefficient = to_torch(np.sqrt(1. - alphas_cumprod) * betas)
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, noise_pred, clip_denoised: bool):
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance, x_recon
def forward(self, img_hr, img_lr, img_lr_up, t=None, *args, **kwargs):
x = img_hr
b, *_, device = *x.shape, x.device
t = torch.randint(0, self.num_timesteps, (b,), device=device).long() \
if t is None else torch.LongTensor([t]).repeat(b).to(device)
if hparams['use_rrdb']:
if hparams['fix_rrdb']:
self.rrdb.eval()
with torch.no_grad():
rrdb_out, cond = self.rrdb(img_lr, True)
else:
rrdb_out, cond = self.rrdb(img_lr, True)
else:
rrdb_out = img_lr_up
cond = img_lr
x = self.img2res(x, img_lr_up)
p_losses, x_tp1, noise_pred, x_t, x_t_gt, x_0 = self.p_losses(x, t, cond, img_lr_up, *args, **kwargs)
ret = {'q': p_losses}
if not hparams['fix_rrdb']:
if hparams['aux_l1_loss']:
ret['aux_l1'] = F.l1_loss(rrdb_out, img_hr)
if hparams['aux_ssim_loss']:
ret['aux_ssim'] = 1 - self.ssim_loss(rrdb_out, img_hr)
if hparams['aux_percep_loss']:
ret['aux_percep'] = self.percep_loss_fn[0](img_hr, rrdb_out)
x_tp1 = self.res2img(x_tp1, img_lr_up)
x_t = self.res2img(x_t, img_lr_up)
x_t_gt = self.res2img(x_t_gt, img_lr_up)
return ret, (x_tp1, x_t_gt, x_t), t
def p_losses(self, x_start, t, cond, img_lr_up, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_tp1_gt = self.q_sample(x_start=x_start, t=t, noise=noise)
x_t_gt = self.q_sample(x_start=x_start, t=t - 1, noise=noise)
noise_pred = self.denoise_fn(x_tp1_gt, t, cond, img_lr_up)
x_t_pred, x0_pred = self.p_sample(x_tp1_gt, t, cond, img_lr_up, noise_pred=noise_pred)
if self.loss_type == 'l1':
loss = (noise - noise_pred).abs().mean()
elif self.loss_type == 'l2':
loss = F.mse_loss(noise, noise_pred)
elif self.loss_type == 'ssim':
loss = (noise - noise_pred).abs().mean()
loss = loss + (1 - self.ssim_loss(noise, noise_pred))
else:
raise NotImplementedError()
return loss, x_tp1_gt, noise_pred, x_t_pred, x_t_gt, x0_pred
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
t_cond = (t[:, None, None, None] >= 0).float()
t = t.clamp_min(0)
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
) * t_cond + x_start * (1 - t_cond)
@torch.no_grad()
def p_sample(self, x, t, cond, img_lr_up, noise_pred=None, clip_denoised=True, repeat_noise=False):
if noise_pred is None:
noise_pred = self.denoise_fn(x, t, cond=cond, img_lr_up=img_lr_up)
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance, x0_pred = self.p_mean_variance(
x=x, t=t, noise_pred=noise_pred, clip_denoised=clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0_pred
@torch.no_grad()
def sample(self, img_lr, img_lr_up, shape, save_intermediate=False):
device = self.betas.device
b = shape[0]
if not hparams['res']:
t = torch.full((b,), self.num_timesteps - 1, device=device, dtype=torch.long)
img = self.q_sample(img_lr_up, t)
else:
img = torch.randn(shape, device=device)
if hparams['use_rrdb']:
rrdb_out, cond = self.rrdb(img_lr, True)
else:
rrdb_out = img_lr_up
cond = img_lr
it = reversed(range(0, self.num_timesteps))
if self.sample_tqdm:
it = tqdm(it, desc='sampling loop time step', total=self.num_timesteps)
images = []
for i in it:
img, x_recon = self.p_sample(
img, torch.full((b,), i, device=device, dtype=torch.long), cond, img_lr_up)
if save_intermediate:
img_ = self.res2img(img, img_lr_up)
x_recon_ = self.res2img(x_recon, img_lr_up)
images.append((img_.cpu(), x_recon_.cpu()))
img = self.res2img(img, img_lr_up)
if save_intermediate:
return img, rrdb_out, images
else:
return img, rrdb_out
@torch.no_grad()
def interpolate(self, x1, x2, img_lr, img_lr_up, t=None, lam=0.5):
b, *_, device = *x1.shape, x1.device
t = default(t, self.num_timesteps - 1)
if hparams['use_rrdb']:
rrdb_out, cond = self.rrdb(img_lr, True)
else:
cond = img_lr
assert x1.shape == x2.shape
x1 = self.img2res(x1, img_lr_up)
x2 = self.img2res(x2, img_lr_up)
t_batched = torch.stack([torch.tensor(t, device=device)] * b)
xt1, xt2 = map(lambda x: self.q_sample(x, t=t_batched), (x1, x2))
img = (1 - lam) * xt1 + lam * xt2
for i in tqdm(reversed(range(0, t)), desc='interpolation sample time step', total=t):
img, x_recon = self.p_sample(
img, torch.full((b,), i, device=device, dtype=torch.long), cond, img_lr_up)
img = self.res2img(img, img_lr_up)
return img
def res2img(self, img_, img_lr_up, clip_input=None):
if clip_input is None:
clip_input = hparams['clip_input']
if hparams['res']:
if clip_input:
img_ = img_.clamp(-1, 1)
img_ = img_ / hparams['res_rescale'] + img_lr_up
return img_
def img2res(self, x, img_lr_up, clip_input=None):
if clip_input is None:
clip_input = hparams['clip_input']
if hparams['res']:
x = (x - img_lr_up) * hparams['res_rescale']
if clip_input:
x = x.clamp(-1, 1)
return x
|