File size: 13,009 Bytes
193c713
 
 
 
 
 
 
 
 
e9b996f
193c713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from functools import partial
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm

from sam_diffsr.utils_sr.plt_img import plt_tensor_img
from .module_util import default
from sam_diffsr.utils_sr.sr_utils import SSIM
from sam_diffsr.utils_sr.hparams import hparams


# gaussian diffusion trainer class
def extract(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def noise_like(shape, device, repeat=False):
    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
    noise = lambda: torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()


def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac):
    betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
    warmup_time = int(num_diffusion_timesteps * warmup_frac)
    betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64)
    return betas


def get_beta_schedule(num_diffusion_timesteps, beta_schedule='linear', beta_start=0.0001, beta_end=0.02):
    if beta_schedule == 'quad':
        betas = np.linspace(beta_start ** 0.5, beta_end ** 0.5, num_diffusion_timesteps, dtype=np.float64) ** 2
    elif beta_schedule == 'linear':
        betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64)
    elif beta_schedule == 'warmup10':
        betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1)
    elif beta_schedule == 'warmup50':
        betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5)
    elif beta_schedule == 'const':
        betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
    elif beta_schedule == 'jsd':  # 1/T, 1/(T-1), 1/(T-2), ..., 1
        betas = 1. / np.linspace(num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64)
    else:
        raise NotImplementedError(beta_schedule)
    assert betas.shape == (num_diffusion_timesteps,)
    return betas


def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    x = np.linspace(0, steps, steps)
    alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return np.clip(betas, a_min=0, a_max=0.999)


class GaussianDiffusion(nn.Module):
    def __init__(self, denoise_fn, rrdb_net, timesteps=1000, loss_type='l1'):
        super().__init__()
        self.denoise_fn = denoise_fn
        # condition net
        self.rrdb = rrdb_net
        self.ssim_loss = SSIM(window_size=11)
        
        
        if hparams['beta_schedule'] == 'cosine':
            betas = cosine_beta_schedule(timesteps, s=hparams['beta_s'])
        if hparams['beta_schedule'] == 'linear':
            betas = get_beta_schedule(timesteps, beta_end=hparams['beta_end'])
            if hparams['res']:
                betas[-1] = 0.999
        
        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
        
        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.loss_type = loss_type
        
        to_torch = partial(torch.tensor, dtype=torch.float32)
        
        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
        
        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
        
        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
        
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer('posterior_variance', to_torch(posterior_variance))
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
        self.register_buffer('posterior_mean_coef1', to_torch(
                betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
        self.register_buffer('posterior_mean_coef2', to_torch(
                (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
        self.sample_tqdm = True
        
        self.mask_coefficient = to_torch(np.sqrt(1. - alphas_cumprod) * betas)
    
    def q_mean_variance(self, x_start, t):
        mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
        variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
        log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
        return mean, variance, log_variance
    
    def predict_start_from_noise(self, x_t, t, noise):
        return (
                extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
                extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )
    
    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
                extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
                extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped
    
    def p_mean_variance(self, x, t, noise_pred, clip_denoised: bool):
        x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
        
        if clip_denoised:
            x_recon.clamp_(-1.0, 1.0)
        
        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance, x_recon
    
    def forward(self, img_hr, img_lr, img_lr_up, t=None, *args, **kwargs):
        x = img_hr
        b, *_, device = *x.shape, x.device
        t = torch.randint(0, self.num_timesteps, (b,), device=device).long() \
            if t is None else torch.LongTensor([t]).repeat(b).to(device)
        if hparams['use_rrdb']:
            if hparams['fix_rrdb']:
                self.rrdb.eval()
                with torch.no_grad():
                    rrdb_out, cond = self.rrdb(img_lr, True)
            else:
                rrdb_out, cond = self.rrdb(img_lr, True)
        else:
            rrdb_out = img_lr_up
            cond = img_lr
        x = self.img2res(x, img_lr_up)
        p_losses, x_tp1, noise_pred, x_t, x_t_gt, x_0 = self.p_losses(x, t, cond, img_lr_up, *args, **kwargs)
        ret = {'q': p_losses}
        if not hparams['fix_rrdb']:
            if hparams['aux_l1_loss']:
                ret['aux_l1'] = F.l1_loss(rrdb_out, img_hr)
            if hparams['aux_ssim_loss']:
                ret['aux_ssim'] = 1 - self.ssim_loss(rrdb_out, img_hr)
            if hparams['aux_percep_loss']:
                ret['aux_percep'] = self.percep_loss_fn[0](img_hr, rrdb_out)
        
        
        x_tp1 = self.res2img(x_tp1, img_lr_up)
        x_t = self.res2img(x_t, img_lr_up)
        x_t_gt = self.res2img(x_t_gt, img_lr_up)
        return ret, (x_tp1, x_t_gt, x_t), t
    
    def p_losses(self, x_start, t, cond, img_lr_up, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        x_tp1_gt = self.q_sample(x_start=x_start, t=t, noise=noise)
        x_t_gt = self.q_sample(x_start=x_start, t=t - 1, noise=noise)
        noise_pred = self.denoise_fn(x_tp1_gt, t, cond, img_lr_up)
        x_t_pred, x0_pred = self.p_sample(x_tp1_gt, t, cond, img_lr_up, noise_pred=noise_pred)
        
        if self.loss_type == 'l1':
            loss = (noise - noise_pred).abs().mean()
        elif self.loss_type == 'l2':
            loss = F.mse_loss(noise, noise_pred)
        elif self.loss_type == 'ssim':
            loss = (noise - noise_pred).abs().mean()
            loss = loss + (1 - self.ssim_loss(noise, noise_pred))
        else:
            raise NotImplementedError()
        return loss, x_tp1_gt, noise_pred, x_t_pred, x_t_gt, x0_pred
    
    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        t_cond = (t[:, None, None, None] >= 0).float()
        t = t.clamp_min(0)
        return (
                extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
                extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
        ) * t_cond + x_start * (1 - t_cond)
    
    @torch.no_grad()
    def p_sample(self, x, t, cond, img_lr_up, noise_pred=None, clip_denoised=True, repeat_noise=False):
        if noise_pred is None:
            noise_pred = self.denoise_fn(x, t, cond=cond, img_lr_up=img_lr_up)
        b, *_, device = *x.shape, x.device
        model_mean, _, model_log_variance, x0_pred = self.p_mean_variance(
                x=x, t=t, noise_pred=noise_pred, clip_denoised=clip_denoised)
        noise = noise_like(x.shape, device, repeat_noise)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0_pred
    
    @torch.no_grad()
    def sample(self, img_lr, img_lr_up, shape, save_intermediate=False):
        device = self.betas.device
        b = shape[0]
        if not hparams['res']:
            t = torch.full((b,), self.num_timesteps - 1, device=device, dtype=torch.long)
            img = self.q_sample(img_lr_up, t)
        else:
            img = torch.randn(shape, device=device)
        if hparams['use_rrdb']:
            rrdb_out, cond = self.rrdb(img_lr, True)
        else:
            rrdb_out = img_lr_up
            cond = img_lr
        it = reversed(range(0, self.num_timesteps))
        if self.sample_tqdm:
            it = tqdm(it, desc='sampling loop time step', total=self.num_timesteps)
        images = []
        for i in it:
            img, x_recon = self.p_sample(
                    img, torch.full((b,), i, device=device, dtype=torch.long), cond, img_lr_up)
            if save_intermediate:
                img_ = self.res2img(img, img_lr_up)
                x_recon_ = self.res2img(x_recon, img_lr_up)
                images.append((img_.cpu(), x_recon_.cpu()))
        img = self.res2img(img, img_lr_up)
        if save_intermediate:
            return img, rrdb_out, images
        else:
            return img, rrdb_out
    
    @torch.no_grad()
    def interpolate(self, x1, x2, img_lr, img_lr_up, t=None, lam=0.5):
        b, *_, device = *x1.shape, x1.device
        t = default(t, self.num_timesteps - 1)
        if hparams['use_rrdb']:
            rrdb_out, cond = self.rrdb(img_lr, True)
        else:
            cond = img_lr
        
        assert x1.shape == x2.shape
        
        x1 = self.img2res(x1, img_lr_up)
        x2 = self.img2res(x2, img_lr_up)
        
        t_batched = torch.stack([torch.tensor(t, device=device)] * b)
        xt1, xt2 = map(lambda x: self.q_sample(x, t=t_batched), (x1, x2))
        
        img = (1 - lam) * xt1 + lam * xt2
        for i in tqdm(reversed(range(0, t)), desc='interpolation sample time step', total=t):
            img, x_recon = self.p_sample(
                    img, torch.full((b,), i, device=device, dtype=torch.long), cond, img_lr_up)
        
        img = self.res2img(img, img_lr_up)
        return img
    
    def res2img(self, img_, img_lr_up, clip_input=None):
        if clip_input is None:
            clip_input = hparams['clip_input']
        if hparams['res']:
            if clip_input:
                img_ = img_.clamp(-1, 1)
            img_ = img_ / hparams['res_rescale'] + img_lr_up
        return img_
    
    def img2res(self, x, img_lr_up, clip_input=None):
        if clip_input is None:
            clip_input = hparams['clip_input']
        if hparams['res']:
            x = (x - img_lr_up) * hparams['res_rescale']
            if clip_input:
                x = x.clamp(-1, 1)
        return x