Spaces:
Runtime error
Runtime error
File size: 6,633 Bytes
193c713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import functools
import torch
import torch.nn.functional as F
from torch import nn
from sam_diffsr.utils_sr.hparams import hparams
from .commons import Mish, SinusoidalPosEmb, RRDB, Residual, Rezero, LinearAttention
from .commons import ResnetBlock, Upsample, Block, Downsample
from .module_util import make_layer, initialize_weights
class RRDBNet(nn.Module):
def __init__(self, in_nc, out_nc, nf, nb, gc=32):
super(RRDBNet, self).__init__()
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
#### upsampling
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
if hparams['sr_scale'] == 8:
self.upconv3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.2)
def forward(self, x, get_fea=False):
feas = []
x = (x + 1) / 2
fea_first = fea = self.conv_first(x)
for l in self.RRDB_trunk:
fea = l(fea)
feas.append(fea)
trunk = self.trunk_conv(fea)
fea = fea_first + trunk
feas.append(fea)
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
if hparams['sr_scale'] == 8:
fea = self.lrelu(self.upconv3(F.interpolate(fea, scale_factor=2, mode='nearest')))
fea_hr = self.HRconv(fea)
out = self.conv_last(self.lrelu(fea_hr))
out = out.clamp(0, 1)
out = out * 2 - 1
if get_fea:
return out, feas
else:
return out
class Unet(nn.Module):
def __init__(self, dim, out_dim=None, dim_mults=(1, 2, 4, 8), cond_dim=32):
super().__init__()
dims = [3, *map(lambda m: dim * m, dim_mults)]
in_out = list(zip(dims[:-1], dims[1:]))
groups = 0
self.sam_config = hparams['sam_config']
cond_proj_in = cond_dim * ((hparams['rrdb_num_block'] + 1) // 3)
if self.sam_config['cond_sam']:
# cond_proj_in += 1
self.sam_conv = nn.Sequential(
nn.Conv2d(dim + 1, dim, 1, 1, 0, bias=True),
nn.Conv2d(dim, dim, 1, 1, 0, bias=True),
nn.Conv2d(dim, dim, 1, 1, 0, bias=True)
)
else:
self.sam_conv = None
self.cond_proj = nn.ConvTranspose2d(cond_proj_in, dim, hparams['sr_scale'] * 2, hparams['sr_scale'],
hparams['sr_scale'] // 2)
self.time_pos_emb = SinusoidalPosEmb(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, dim * 4),
Mish(),
nn.Linear(dim * 4, dim)
)
self.downs = nn.ModuleList([])
self.ups = nn.ModuleList([])
num_resolutions = len(in_out)
for ind, (dim_in, dim_out) in enumerate(in_out):
is_last = ind >= (num_resolutions - 1)
self.downs.append(nn.ModuleList([
ResnetBlock(dim_in, dim_out, time_emb_dim=dim, groups=groups),
ResnetBlock(dim_out, dim_out, time_emb_dim=dim, groups=groups),
Downsample(dim_out) if not is_last else nn.Identity()
]))
mid_dim = dims[-1]
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim, groups=groups)
if hparams['use_attn']:
self.mid_attn = Residual(Rezero(LinearAttention(mid_dim)))
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim, groups=groups)
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
is_last = ind >= (num_resolutions - 1)
self.ups.append(nn.ModuleList([
ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim, groups=groups),
ResnetBlock(dim_in, dim_in, time_emb_dim=dim, groups=groups),
Upsample(dim_in) if not is_last else nn.Identity()
]))
self.final_conv = nn.Sequential(
Block(dim, dim, groups=groups),
nn.Conv2d(dim, out_dim, 1)
)
if hparams['res'] and hparams['up_input']:
self.up_proj = nn.Sequential(
nn.ReflectionPad2d(1), nn.Conv2d(3, dim, 3),
)
if hparams['use_wn']:
self.apply_weight_norm()
if hparams['weight_init']:
self.apply(initialize_weights)
def apply_weight_norm(self):
def _apply_weight_norm(m):
if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d):
torch.nn.utils.weight_norm(m)
# print(f"| Weight norm is applied to {m}.")
self.apply(_apply_weight_norm)
def forward(self, x, time, cond, img_lr_up, sam_mask=None):
t = self.time_pos_emb(time)
t = self.mlp(t)
h = []
cond = self.cond_proj(torch.cat(cond[2::3], 1))
if self.sam_config['cond_sam']:
cond = torch.cat([cond, sam_mask], 1)
cond = self.sam_conv(cond)
for i, (resnet, resnet2, downsample) in enumerate(self.downs):
x = resnet(x, t)
x = resnet2(x, t)
if i == 0:
x = x + cond
if hparams['res'] and hparams['up_input']:
x = x + self.up_proj(img_lr_up)
h.append(x)
x = downsample(x)
x = self.mid_block1(x, t)
if hparams['use_attn']:
x = self.mid_attn(x)
x = self.mid_block2(x, t)
for resnet, resnet2, upsample in self.ups:
x = torch.cat((x, h.pop()), dim=1)
x = resnet(x, t)
x = resnet2(x, t)
x = upsample(x)
return self.final_conv(x)
def make_generation_fast_(self):
def remove_weight_norm(m):
try:
nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(remove_weight_norm)
|