Spaces:
Sleeping
Sleeping
Varun Wadhwa
commited on
Copying over
Browse files- app.py +252 -0
- requirements.txt +15 -0
app.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import os
|
| 7 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.optim as optim
|
| 12 |
+
from torch.utils.data import DataLoader
|
| 13 |
+
|
| 14 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification
|
| 15 |
+
from transformers import DebertaV2Config, DebertaV2ForTokenClassification
|
| 16 |
+
|
| 17 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 18 |
+
|
| 19 |
+
# print weights
|
| 20 |
+
def print_trainable_parameters(model):
|
| 21 |
+
pytorch_total_params = sum(p.numel() for p in model.parameters())
|
| 22 |
+
torch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 23 |
+
print(f'total params: {pytorch_total_params}. tunable params: {torch_total_params}')
|
| 24 |
+
|
| 25 |
+
device = torch.device('cpu')
|
| 26 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
| 27 |
+
# True
|
| 28 |
+
if torch.cuda.is_available():
|
| 29 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
| 30 |
+
device = torch.device('cuda')
|
| 31 |
+
|
| 32 |
+
# Load models
|
| 33 |
+
st.write('Loading the pretrained model ...')
|
| 34 |
+
teacher_model_name = "iiiorg/piiranha-v1-detect-personal-information"
|
| 35 |
+
teacher_model = AutoModelForTokenClassification.from_pretrained(teacher_model_name)
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(teacher_model_name)
|
| 37 |
+
print(teacher_model)
|
| 38 |
+
print_trainable_parameters(teacher_model)
|
| 39 |
+
label2id = teacher_model.config.label2id
|
| 40 |
+
id2label = teacher_model.config.id2label
|
| 41 |
+
|
| 42 |
+
st.write("id2label: ", id2label)
|
| 43 |
+
st.write("label2id: ", label2id)
|
| 44 |
+
dimension = len(id2label)
|
| 45 |
+
st.write("dimension", dimension)
|
| 46 |
+
|
| 47 |
+
student_model_config = teacher_model.config
|
| 48 |
+
student_model_config.num_attention_heads = 8
|
| 49 |
+
student_model_config.num_hidden_layers = 4
|
| 50 |
+
student_model = DebertaV2ForTokenClassification.from_pretrained(
|
| 51 |
+
"microsoft/mdeberta-v3-base",
|
| 52 |
+
config=student_model_config)
|
| 53 |
+
# ignore_mismatched_sizes=True)
|
| 54 |
+
print(student_model)
|
| 55 |
+
print_trainable_parameters(student_model)
|
| 56 |
+
|
| 57 |
+
if torch.cuda.is_available():
|
| 58 |
+
teacher_model = teacher_model.to(device)
|
| 59 |
+
student_model = student_model.to(device)
|
| 60 |
+
|
| 61 |
+
# Load data.
|
| 62 |
+
raw_dataset = load_dataset("ai4privacy/pii-masking-400k", split='train')
|
| 63 |
+
raw_dataset = raw_dataset.filter(lambda example: example["language"].startswith("en"))
|
| 64 |
+
#raw_dataset = raw_dataset.select(range(2000))
|
| 65 |
+
raw_dataset = raw_dataset.filter(lambda example, idx: idx % 11 == 0, with_indices=True)
|
| 66 |
+
raw_dataset = raw_dataset.train_test_split(test_size=0.2)
|
| 67 |
+
print(raw_dataset)
|
| 68 |
+
print(raw_dataset.column_names)
|
| 69 |
+
|
| 70 |
+
# inputs = tokenizer(
|
| 71 |
+
# raw_dataset['train'][0]['mbert_tokens'],
|
| 72 |
+
# truncation=True,
|
| 73 |
+
# is_split_into_words=True)
|
| 74 |
+
# print(inputs)
|
| 75 |
+
# print(inputs.tokens())
|
| 76 |
+
# print(inputs.word_ids())
|
| 77 |
+
|
| 78 |
+
# function to align labels with tokens
|
| 79 |
+
# --> special tokens: -100 label id (ignored by cross entropy),
|
| 80 |
+
# --> if tokens are inside a word, replace 'B-' with 'I-'
|
| 81 |
+
def align_labels_with_tokens(labels):
|
| 82 |
+
aligned_label_ids = []
|
| 83 |
+
aligned_label_ids.append(-100)
|
| 84 |
+
for i, label in enumerate(labels):
|
| 85 |
+
if label.startswith("B-"):
|
| 86 |
+
label = label.replace("B-", "I-")
|
| 87 |
+
aligned_label_ids.append(label2id[label])
|
| 88 |
+
aligned_label_ids.append(-100)
|
| 89 |
+
return aligned_label_ids
|
| 90 |
+
|
| 91 |
+
# create tokenize function
|
| 92 |
+
def tokenize_function(examples):
|
| 93 |
+
# tokenize and truncate text. The examples argument would have already stripped
|
| 94 |
+
# the train or test label.
|
| 95 |
+
new_labels = []
|
| 96 |
+
inputs = tokenizer(
|
| 97 |
+
examples['mbert_tokens'],
|
| 98 |
+
is_split_into_words=True,
|
| 99 |
+
padding=True,
|
| 100 |
+
truncation=True,
|
| 101 |
+
max_length=512)
|
| 102 |
+
for _, labels in enumerate(examples['mbert_token_classes']):
|
| 103 |
+
new_labels.append(align_labels_with_tokens(labels))
|
| 104 |
+
|
| 105 |
+
inputs["labels"] = new_labels
|
| 106 |
+
return inputs
|
| 107 |
+
|
| 108 |
+
# tokenize training and validation datasets
|
| 109 |
+
tokenized_data = raw_dataset.map(
|
| 110 |
+
tokenize_function,
|
| 111 |
+
batched=True)
|
| 112 |
+
tokenized_data.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
| 113 |
+
# data collator
|
| 114 |
+
data_collator = DataCollatorForTokenClassification(tokenizer)
|
| 115 |
+
|
| 116 |
+
st.write(tokenized_data["train"][:2]["labels"])
|
| 117 |
+
|
| 118 |
+
# Function to evaluate model performance
|
| 119 |
+
def evaluate_model(model, dataloader, device):
|
| 120 |
+
model.eval() # Set model to evaluation mode
|
| 121 |
+
all_preds = []
|
| 122 |
+
all_labels = []
|
| 123 |
+
|
| 124 |
+
# Disable gradient calculations
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
for batch in dataloader:
|
| 127 |
+
input_ids = batch['input_ids'].to(device)
|
| 128 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 129 |
+
labels = batch['labels'].to(device)
|
| 130 |
+
|
| 131 |
+
# Forward pass to get logits
|
| 132 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
| 133 |
+
logits = outputs.logits
|
| 134 |
+
|
| 135 |
+
# Get predictions
|
| 136 |
+
preds = torch.argmax(logits, dim=-1).cpu().numpy()
|
| 137 |
+
all_preds.extend(preds)
|
| 138 |
+
all_labels.extend(labels.cpu().numpy())
|
| 139 |
+
|
| 140 |
+
# Calculate evaluation metrics
|
| 141 |
+
print("evaluate_model sizes")
|
| 142 |
+
print(len(all_preds[0]))
|
| 143 |
+
print(len(all_labels[0]))
|
| 144 |
+
all_preds = np.asarray(all_preds, dtype=np.float32)
|
| 145 |
+
all_labels = np.asarray(all_labels, dtype=np.float32)
|
| 146 |
+
print("Flattened sizes")
|
| 147 |
+
print(all_preds.size)
|
| 148 |
+
print(all_labels.size)
|
| 149 |
+
all_preds = all_preds.flatten()
|
| 150 |
+
all_labels = all_labels.flatten()
|
| 151 |
+
accuracy = accuracy_score(all_labels, all_preds)
|
| 152 |
+
precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average='micro')
|
| 153 |
+
|
| 154 |
+
return accuracy, precision, recall, f1
|
| 155 |
+
|
| 156 |
+
# Function to compute distillation and hard-label loss
|
| 157 |
+
def distillation_loss(student_logits, teacher_logits, true_labels, temperature, alpha):
|
| 158 |
+
# print("Distillation loss sizes")
|
| 159 |
+
# print(teacher_logits.size())
|
| 160 |
+
# print(student_logits.size())
|
| 161 |
+
# print(true_labels.size())
|
| 162 |
+
# Compute soft targets from teacher logits
|
| 163 |
+
soft_targets = nn.functional.softmax(teacher_logits / temperature, dim=-1)
|
| 164 |
+
student_soft = nn.functional.log_softmax(student_logits / temperature, dim=-1)
|
| 165 |
+
|
| 166 |
+
# KL Divergence loss for distillation
|
| 167 |
+
distill_loss = nn.functional.kl_div(student_soft, soft_targets, reduction='batchmean') * (temperature ** 2)
|
| 168 |
+
|
| 169 |
+
# Cross-entropy loss for hard labels
|
| 170 |
+
student_logit_reshape = torch.transpose(student_logits, 1, 2) # transpose to match the labels dimension
|
| 171 |
+
hard_loss = nn.CrossEntropyLoss()(student_logit_reshape, true_labels)
|
| 172 |
+
|
| 173 |
+
# Combine losses
|
| 174 |
+
loss = alpha * distill_loss + (1.0 - alpha) * hard_loss
|
| 175 |
+
|
| 176 |
+
return loss
|
| 177 |
+
|
| 178 |
+
# hyperparameters
|
| 179 |
+
batch_size = 32
|
| 180 |
+
lr = 1e-4
|
| 181 |
+
num_epochs = 30
|
| 182 |
+
temperature = 2.0
|
| 183 |
+
alpha = 0.5
|
| 184 |
+
|
| 185 |
+
# define optimizer
|
| 186 |
+
optimizer = optim.Adam(student_model.parameters(), lr=lr)
|
| 187 |
+
|
| 188 |
+
# create training data loader
|
| 189 |
+
dataloader = DataLoader(tokenized_data['train'], batch_size=batch_size, collate_fn=data_collator)
|
| 190 |
+
# create testing data loader
|
| 191 |
+
test_dataloader = DataLoader(tokenized_data['test'], batch_size=batch_size, collate_fn=data_collator)
|
| 192 |
+
|
| 193 |
+
# put student model in train mode
|
| 194 |
+
student_model.train()
|
| 195 |
+
|
| 196 |
+
# train model
|
| 197 |
+
for epoch in range(num_epochs):
|
| 198 |
+
for batch in dataloader:
|
| 199 |
+
# Prepare inputs
|
| 200 |
+
input_ids = batch['input_ids'].to(device)
|
| 201 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 202 |
+
labels = batch['labels'].to(device)
|
| 203 |
+
|
| 204 |
+
# Disable gradient calculation for teacher model
|
| 205 |
+
with torch.no_grad():
|
| 206 |
+
teacher_outputs = teacher_model(input_ids, attention_mask=attention_mask)
|
| 207 |
+
teacher_logits = teacher_outputs.logits
|
| 208 |
+
|
| 209 |
+
# Forward pass through the student model
|
| 210 |
+
student_outputs = student_model(input_ids, attention_mask=attention_mask)
|
| 211 |
+
student_logits = student_outputs.logits
|
| 212 |
+
|
| 213 |
+
# Compute the distillation loss
|
| 214 |
+
loss = distillation_loss(student_logits, teacher_logits, labels, temperature, alpha)
|
| 215 |
+
|
| 216 |
+
# Backpropagation
|
| 217 |
+
optimizer.zero_grad()
|
| 218 |
+
loss.backward()
|
| 219 |
+
optimizer.step()
|
| 220 |
+
|
| 221 |
+
print(f"Epoch {epoch + 1} completed with loss: {loss.item()}")
|
| 222 |
+
|
| 223 |
+
# Evaluate the teacher model
|
| 224 |
+
teacher_accuracy, teacher_precision, teacher_recall, teacher_f1 = evaluate_model(teacher_model, test_dataloader, device)
|
| 225 |
+
print(f"Teacher (test) - Accuracy: {teacher_accuracy:.4f}, Precision: {teacher_precision:.4f}, Recall: {teacher_recall:.4f}, F1 Score: {teacher_f1:.4f}")
|
| 226 |
+
|
| 227 |
+
# Evaluate the student model
|
| 228 |
+
student_accuracy, student_precision, student_recall, student_f1 = evaluate_model(student_model, test_dataloader, device)
|
| 229 |
+
print(f"Student (test) - Accuracy: {student_accuracy:.4f}, Precision: {student_precision:.4f}, Recall: {student_recall:.4f}, F1 Score: {student_f1:.4f}")
|
| 230 |
+
print("\n")
|
| 231 |
+
|
| 232 |
+
# put student model back into train mode
|
| 233 |
+
student_model.train()
|
| 234 |
+
|
| 235 |
+
#Compare the models
|
| 236 |
+
# create testing data loader
|
| 237 |
+
validation_dataloader = DataLoader(tokenized_data['test'], batch_size=8, collate_fn=data_collator)
|
| 238 |
+
# Evaluate the teacher model
|
| 239 |
+
teacher_accuracy, teacher_precision, teacher_recall, teacher_f1 = evaluate_model(teacher_model, validation_dataloader, device)
|
| 240 |
+
print(f"Teacher (validation) - Accuracy: {teacher_accuracy:.4f}, Precision: {teacher_precision:.4f}, Recall: {teacher_recall:.4f}, F1 Score: {teacher_f1:.4f}")
|
| 241 |
+
# Evaluate the student model
|
| 242 |
+
student_accuracy, student_precision, student_recall, student_f1 = evaluate_model(student_model, validation_dataloader, device)
|
| 243 |
+
print(f"Student (validation) - Accuracy: {student_accuracy:.4f}, Precision: {student_precision:.4f}, Recall: {student_recall:.4f}, F1 Score: {student_f1:.4f}")
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
st.write('Pushing model to huggingface')
|
| 247 |
+
|
| 248 |
+
# Push model to huggingface
|
| 249 |
+
hf_name = 'CarolXia' # your hf username or org name
|
| 250 |
+
mode_name = "pii-kd-deberta-v2"
|
| 251 |
+
model_id = hf_name + "/" + mode_name
|
| 252 |
+
student_model.push_to_hub(model_id, token=st.secrets["HUGGINGFACE_TOKEN"])
|
requirements.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
auto-gptq
|
| 2 |
+
bitsandbytes
|
| 3 |
+
datasets
|
| 4 |
+
evaluate
|
| 5 |
+
seqeval
|
| 6 |
+
gliner
|
| 7 |
+
torch>=2.0.0
|
| 8 |
+
transformers>=4.38.2
|
| 9 |
+
huggingface_hub>=0.21.4
|
| 10 |
+
onnxruntime
|
| 11 |
+
optimum
|
| 12 |
+
peft
|
| 13 |
+
sentencepiece
|
| 14 |
+
tqdm
|
| 15 |
+
|