Spaces:
Sleeping
Sleeping
File size: 10,161 Bytes
a34fa54 548a3a4 a34fa54 4fdd604 a34fa54 6d8f0ce a34fa54 548a3a4 a34fa54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
from llama_index.core import Settings, VectorStoreIndex, StorageContext, load_index_from_storage
from llama_index.core.embeddings import BaseEmbedding
from llama_index.llms.mistralai import MistralAI
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import SimpleDirectoryReader
from llama_index.core import PromptTemplate
# from pydantic import PrivateAttr
# import requests
from typing import List, Optional, Union
# from llama_index.core.embeddings.utils import BaseEmbedding
from llama_index.embeddings.huggingface import HuggingFaceInferenceAPIEmbedding
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import streamlit as st
from functools import lru_cache
import pickle
import os
mistral_api_key = os.getenv("mistral_api_key")
class QASystem:
def __init__(self,
mistral_api_key: str = mistral_api_key,
data_dir: str = "./data",
storage_dir: str = "./index_llama_136_multilingual-e5-large",
model_temperature: float = 0.002):
self.data_dir = data_dir
self.storage_dir = storage_dir
# Initialize embedding model with API
# api_key =
self.embedding_model = HuggingFaceInferenceAPIEmbedding(
model_name="intfloat/multilingual-e5-large",
)
# self.embedding_model = HuggingFaceEmbedding(model_name="intfloat/multilingual-e5-large",trust_remote_code=True)
self.llm = MistralAI(
model="mistral-large-latest",
api_key=mistral_api_key,
temperature=model_temperature,
max_tokens=1024
)
self._configure_settings()
# self.create_index()
self.index = self.load_index() # Define index here
def _configure_settings(self):
Settings.llm = self.llm
Settings.embed_model = self.embedding_model
def create_index(self):
print("creating index")
documents = SimpleDirectoryReader(self.data_dir).load_data()
node_parser = SentenceSplitter(chunk_size=206, chunk_overlap=0)
nodes = node_parser.get_nodes_from_documents(documents, show_progress=True)
sentence_index = VectorStoreIndex(nodes, show_progress=True)
sentence_index.storage_context.persist(self.storage_dir)
# # Save the index to a pickle file
# with open(f"{self.storage_dir}/index.pkl", "wb") as f:
# pickle.dump(sentence_index, f)
return sentence_index
def load_index(self):
# with open(f'{self.storage_dir}/index.pkl', 'rb') as f:
# sentence_index = pickle.load(f)
storage_context = StorageContext.from_defaults(persist_dir=self.storage_dir)
return load_index_from_storage(storage_context, embed_model=self.embedding_model)
def create_query_engine(self):
template = """
استخدم المعلومات التالية للإجابة على السؤال في النهاية. إذا لم تكن تعرف الإجابة، فقل فقط أنك لا تعرف، لا تحاول اختلاق إجابة.
{context_str}
السؤال: {query_str}
الإجابة بالعربية:
"""
prompt = PromptTemplate(template=template)
return self.index.as_query_engine(
similarity_top_k=10,
streaming=True,
text_qa_template=prompt,
response_mode="tree_summarize", #tree_summarize, simple_summarize, compact
embed_model=self.embedding_model
)
def query(self, question: str):
query_engine = self.create_query_engine()
response = query_engine.query(question)
return response#.print_response_stream()
# Utilisation de singleton pour éviter les réinitialisations multiples
# @st.cache_resource
@lru_cache(maxsize=1000)
def get_qa_system():
return QASystem()
def main():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Noto+Kufi+Arabic:wght@100;200;300;400;500;600;700;800;900&display=swap');
/* Application globale de la police */
* {
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
body {
text-align: right;
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
/* Style pour tous les textes */
p, div, span, button, input, label, h1, h2, h3, h4, h5, h6 {
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
/* Titre principal avec taille réduite */
h1 {
font-size: 1.2em !important;
margin-bottom: 0.5em !important;
text-align: center;
padding: 0.3px;
}
.css-1h9b9rq.e1tzin5v0 {
direction: rtl;
text-align: right;
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
/* Style pour l'expandeur */
.streamlit-expanderContent, div[data-testid="stExpander"] {
direction: rtl !important;
text-align: right !important;
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
/* Style pour les boutons de l'expandeur */
button[kind="secondary"] {
direction: rtl !important;
text-align: right !important;
width: 100% !important;
font-family: 'Noto Kufi Arabic', sans-serif !important;
font-weight: 30 !important;
}
/* Style pour tous les éléments de texte */
p, div {
direction: rtl !important;
text-align: right !important;
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
/* Style pour les bullet points */
ul, li {
direction: rtl !important;
text-align: right !important;
margin-right: 20px !important;
margin-left: 0 !important;
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
.stTextInput, .stButton {
margin-left: auto;
margin-right: 0;
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
.stTextInput {
width: 100% !important;
direction: rtl;
text-align: right;
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
/* Force RTL sur tous les conteneurs */
.element-container, .stMarkdown {
direction: rtl !important;
text-align: right !important;
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
/* Style spécifique pour l'expandeur des sources */
.css-1fcdlhc, .css-1629p8f {
direction: rtl !important;
text-align: right !important;
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
/* Style pour le titre */
.stTitle {
font-family: 'Noto Kufi Arabic', sans-serif !important;
font-weight: 700 !important;
}
/* Style pour les boutons */
.stButton>button {
font-family: 'Noto Kufi Arabic', sans-serif !important;
font-weight: 500 !important;
}
/* Style pour les champs de texte */
.stTextInput>div>div>input {
font-family: 'Noto Kufi Arabic', sans-serif !important;
}
</style>
""", unsafe_allow_html=True)
st.title("هذا تطبيق للاجابة عن الاسئلة المتعلقة بالقانون المغربي ")
st.title("حاليا يضم 136 قانونا")
qa_system = get_qa_system()
question = st.text_input("اطرح سؤالك :",placeholder=None)
if st.button("بحث"):
if question:
response_container = st.empty()
def stream_response(token):
if 'current_response' not in st.session_state:
st.session_state.current_response = ""
st.session_state.current_response += token
response_container.markdown(st.session_state.current_response, unsafe_allow_html=True)
try:
query_engine = qa_system.create_query_engine()
st.session_state.current_response = ""
response = query_engine.query(question)
full_response = ""
for token in response.response_gen:
full_response += token
stream_response(token)
if hasattr(response, 'source_nodes'):
st.markdown("""
<div style="direction: rtl !important; text-align: right !important; font-family: 'Noto Kufi Arabic', sans-serif !important;">
<div class="streamlit-expanderHeader">
المصادر
</div>
</div>
""", unsafe_allow_html=True)
with st.expander(""):
for node in response.source_nodes:
st.markdown(f"""
<div style="direction: rtl !important; text-align: right !important; font-family: 'Noto Kufi Arabic', sans-serif !important;">
<p style="text-align: right !important;">مصادر الجواب : {node.metadata.get('file_name', 'Unknown')}</p>
<p style="text-align: right !important;">Extrait: {node.text[:]}</p>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Une erreur s'est produite : {e}")
if __name__ == "__main__":
main() |