stock / app.py
Toymakerftw
test
f4079e2
import logging
import gradio as gr
import pandas as pd
import torch
import numpy as np
from GoogleNews import GoogleNews
from transformers import pipeline
import yfinance as yf
import requests
from fuzzywuzzy import process
import statistics
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="fuzzywuzzy")
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
SENTIMENT_ANALYSIS_MODEL = (
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {DEVICE}")
logging.info("Initializing sentiment analysis model...")
sentiment_analyzer = pipeline(
"sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
)
logging.info("Model initialized successfully")
# Technical Analysis Parameters
TA_CONFIG = {
'rsi_window': 14,
'macd_fast': 12,
'macd_slow': 26,
'macd_signal': 9,
'bollinger_window': 20,
'sma_windows': [20, 50, 200],
'ema_windows': [12, 26],
'volatility_window': 30
}
EXCHANGE_SUFFIXES = {
"NSE": ".NS",
"BSE": ".BO",
"NYSE": "",
"NASDAQ": "",
}
def calculate_technical_indicators(history):
"""Calculate various technical indicators from historical price data"""
ta_results = {}
# RSI
delta = history['Close'].diff()
gain = delta.where(delta > 0, 0)
loss = -delta.where(delta < 0, 0)
avg_gain = gain.rolling(TA_CONFIG['rsi_window']).mean()
avg_loss = loss.rolling(TA_CONFIG['rsi_window']).mean()
rs = avg_gain / avg_loss
ta_results['rsi'] = 100 - (100 / (1 + rs)).iloc[-1]
# MACD
ema_fast = history['Close'].ewm(span=TA_CONFIG['macd_fast'], adjust=False).mean()
ema_slow = history['Close'].ewm(span=TA_CONFIG['macd_slow'], adjust=False).mean()
macd = ema_fast - ema_slow
signal = macd.ewm(span=TA_CONFIG['macd_signal'], adjust=False).mean()
ta_results['macd'] = macd.iloc[-1]
ta_results['macd_signal'] = signal.iloc[-1]
# Bollinger Bands
sma = history['Close'].rolling(TA_CONFIG['bollinger_window']).mean()
std = history['Close'].rolling(TA_CONFIG['bollinger_window']).std()
ta_results['bollinger_upper'] = (sma + 2 * std).iloc[-1]
ta_results['bollinger_lower'] = (sma - 2 * std).iloc[-1]
# Moving Averages
for window in TA_CONFIG['sma_windows']:
ta_results[f'sma_{window}'] = history['Close'].rolling(window).mean().iloc[-1]
for window in TA_CONFIG['ema_windows']:
ta_results[f'ema_{window}'] = history['Close'].ewm(span=window, adjust=False).mean().iloc[-1]
# Volatility
returns = history['Close'].pct_change().dropna()
ta_results['volatility_30d'] = returns.rolling(TA_CONFIG['volatility_window']).std().iloc[-1] * np.sqrt(252)
return ta_results
def generate_price_chart(history):
"""Generate interactive price chart with technical indicators"""
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
# Price and Moving Averages
history['Close'].plot(ax=ax1, label='Price')
for window in TA_CONFIG['sma_windows']:
history['Close'].rolling(window).mean().plot(ax=ax1, label=f'SMA {window}')
ax1.set_title('Price and Moving Averages')
ax1.legend()
# RSI
delta = history['Close'].diff()
gain = delta.where(delta > 0, 0)
loss = -delta.where(delta < 0, 0)
avg_gain = gain.rolling(TA_CONFIG['rsi_window']).mean()
avg_loss = loss.rolling(TA_CONFIG['rsi_window']).mean()
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
rsi.plot(ax=ax2, label='RSI')
ax2.axhline(70, color='red', linestyle='--')
ax2.axhline(30, color='green', linestyle='--')
ax2.set_title('Relative Strength Index (RSI)')
ax2.legend()
plt.tight_layout()
return fig
def resolve_ticker_symbol(query: str) -> str:
"""
Convert company names/partial symbols to valid Yahoo Finance tickers.
Example: "Kalyan Jewellers" → "KALYANKJIL.NS"
"""
url = "https://query2.finance.yahoo.com/v1/finance/search"
headers = {"User-Agent": "Mozilla/5.0"} # Avoid blocking
params = {"q": query, "quotesCount": 5, "country": "India"}
response = requests.get(url, headers=headers, params=params)
data = response.json()
if not data.get("quotes"):
raise ValueError(f"No ticker found for: {query}")
# Extract quotes data
quotes = data["quotes"]
tickers = [quote["symbol"] for quote in quotes]
names = [quote.get("longname") or quote.get("shortname", "") for quote in quotes]
# Fuzzy match the query with company names
best_match, score = process.extractOne(query, names)
if not best_match:
raise ValueError(f"No matching ticker found for: {query}")
index = names.index(best_match)
best_quote = quotes[index]
resolved_ticker = best_quote["symbol"]
exchange_code = best_quote.get("exchange", "").upper()
# Map exchange codes to suffixes
exchange_suffix_map = {
"NSI": ".NS", # NSE
"BOM": ".BO", # BSE
"BSE": ".BO",
"NSE": ".NS",
}
suffix = exchange_suffix_map.get(exchange_code, ".NS") # Default to NSE
# Append suffix only if not already present
if not resolved_ticker.endswith(suffix):
resolved_ticker += suffix
return resolved_ticker
def fetch_articles(query):
try:
logging.info(f"Fetching articles for query: '{query}'")
googlenews = GoogleNews(lang="en")
googlenews.search(query)
articles = googlenews.result()
logging.info(f"Fetched {len(articles)} articles")
return articles
except Exception as e:
logging.error(
f"Error while searching articles for query: '{query}'. Error: {e}"
)
raise gr.Error(
f"Unable to search articles for query: '{query}'. Try again later...",
duration=5,
)
def analyze_article_sentiment(article):
logging.info(f"Analyzing sentiment for article: {article['title']}")
sentiment = sentiment_analyzer(article["desc"])[0]
article["sentiment"] = sentiment
return article
def fetch_yfinance_data(ticker):
"""Enhanced Yahoo Finance data fetching with technical analysis"""
try:
logging.info(f"Fetching Yahoo Finance data for: {ticker}")
stock = yf.Ticker(ticker)
history = stock.history(period="1y", interval="1d")
if history.empty:
logging.error(f"No data found for {ticker}")
return {"error": f"No data found for {ticker}"}
# Calculate technical indicators
ta_data = calculate_technical_indicators(history)
# Current price data
current_price = history['Close'].iloc[-1]
prev_close = history['Close'].iloc[-2] if len(history) > 1 else 0
price_change = current_price - prev_close
percent_change = (price_change / prev_close) * 100 if prev_close != 0 else 0
# Generate price chart
chart = generate_price_chart(history[-120:]) # Last 120 days
return {
'current_price': current_price,
'price_change': price_change,
'percent_change': percent_change,
'chart': chart,
'technical_indicators': ta_data,
'fundamentals': stock.info
}
except Exception as e:
logging.error(f"Error fetching Yahoo Finance data for {ticker}: {str(e)}")
return {"error": f"Failed to fetch data for {ticker}: {str(e)}"}
def time_weighted_sentiment(articles):
"""Apply time-based weighting to sentiment scores"""
now = datetime.now()
weighted_scores = []
for article in articles:
try:
article_date = datetime.strptime(article['date'], '%Y-%m-%d %H:%M:%S')
days_old = (now - article_date).days
weight = max(0, 1 - (days_old / 7)) # Linear decay over 7 days
except:
weight = 0.5 # Default weight if date parsing fails
sentiment = article['sentiment']['label']
score = 1 if sentiment == 'positive' else -1 if sentiment == 'negative' else 0
weighted_scores.append(score * weight)
return weighted_scores
def _format_number(num):
"""Helper to format large numbers with suffixes"""
if isinstance(num, (int, float)):
for unit in ['','K','M','B','T']:
if abs(num) < 1000:
return f"{num:,.2f}{unit}"
num /= 1000
return f"{num:,.2f}P"
return num
def convert_to_dataframe(analyzed_articles):
df = pd.DataFrame(analyzed_articles)
def sentiment_badge(sentiment):
colors = {
"negative": "#ef4444",
"neutral": "#64748b",
"positive": "#22c55e",
}
color = colors.get(sentiment, "grey")
return (
f'<div style="display: inline-flex; align-items: center; gap: 0.5rem;">'
f'<div style="width: 0.75rem; height: 0.75rem; background-color: {color}; border-radius: 50%;"></div>'
f'<span style="text-transform: capitalize; font-weight: 500; color: {color}">{sentiment}</span>'
f'</div>'
)
df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"].lower()))
df["Title"] = df.apply(
lambda row: f'<a href="{row["link"]}" target="_blank" style="text-decoration: none; color: #2563eb;">{row["title"]}</a>',
axis=1,
)
df["Description"] = df["desc"].apply(lambda x: f'<div style="font-size: 0.9rem; color: #4b5563;">{x}</div>')
df["Date"] = df["date"].apply(lambda x: f'<div style="font-size: 0.8rem; color: #6b7280;">{x}</div>')
# Convert to HTML table
html_table = df[["Sentiment", "Title", "Description", "Date"]].to_html(
escape=False,
index=False,
border=0,
classes="gradio-table",
justify="start"
)
# Add custom styling
styled_html = f"""
<style>
.gradio-table {{
width: 100%;
border-collapse: collapse;
margin-bottom: 1rem;
}}
.gradio-table th {{
text-align: left;
padding: 0.75rem;
background-color: #f3f4f6;
border-bottom: 2px solid #d1d5db;
color: #1f2937;
font-weight: 600;
}}
.gradio-table td {{
padding: 0.75rem;
border-bottom: 1px solid #e5e7eb;
background-color: #ffffff;
}}
.gradio-table tr:hover td {{
background-color: #f9fafb;
}}
.gradio-table tr:nth-child(even) td {{
background-color: #f9fafb;
}}
</style>
{html_table}
"""
return styled_html
def generate_stock_recommendation(articles, finance_data):
"""Enhanced recommendation system with technical analysis"""
# Time-weighted sentiment analysis
sentiment_scores = time_weighted_sentiment(articles)
positive_score = sum(s for s in sentiment_scores if s > 0)
negative_score = abs(sum(s for s in sentiment_scores if s < 0))
total_score = positive_score - negative_score
# Technical indicators
ta = finance_data.get('technical_indicators', {})
rec = {
'recommendation': 'HOLD',
'confidence': 'Medium',
'reasons': [],
'risk_factors': []
}
# Sentiment-based factors
if total_score > 3:
rec['recommendation'] = 'BUY'
rec['reasons'].append("Strong positive sentiment trend")
elif total_score < -3:
rec['recommendation'] = 'SELL'
rec['reasons'].append("Significant negative sentiment")
# Technical analysis factors
if ta.get('rsi', 50) > 70:
rec['risk_factors'].append("RSI indicates overbought condition")
elif ta.get('rsi', 50) < 30:
rec['reasons'].append("RSI suggests oversold opportunity")
if ta.get('macd', 0) > ta.get('macd_signal', 0):
rec['reasons'].append("Bullish MACD crossover")
else:
rec['risk_factors'].append("Bearish MACD trend")
# Volatility analysis
if ta.get('volatility_30d', 0) > 0.4:
rec['risk_factors'].append("High volatility detected")
# Combine factors
if len(rec['reasons']) > len(rec['risk_factors']):
rec['confidence'] = 'High'
elif len(rec['risk_factors']) > 2:
rec['recommendation'] = 'SELL' if rec['recommendation'] == 'HOLD' else rec['recommendation']
rec['confidence'] = 'Low'
# Format output
output = f"Recommendation: {rec['recommendation']} ({rec['confidence']} Confidence)\n\n"
output += "Supporting Factors:\n" + "\n".join(f"- {r}" for r in rec['reasons']) + "\n\n"
output += "Risk Factors:\n" + "\n".join(f"- {r}" for r in rec['risk_factors']) + "\n\n"
output += f"Sentiment Score: {total_score:.2f}\n"
output += f"30-Day Volatility: {ta.get('volatility_30d', 0):.2%}"
return output
def analyze_asset_sentiment(asset_input):
logging.info(f"Starting sentiment analysis for asset: {asset_input}")
try:
# Resolve ticker symbol
ticker = resolve_ticker_symbol(asset_input)
logging.info(f"Resolved '{asset_input}' to ticker: {ticker}")
# Fetch and analyze articles
articles = fetch_articles(asset_input)
analyzed_articles = [analyze_article_sentiment(article) for article in articles]
# Fetch financial data and technical indicators
finance_data = fetch_yfinance_data(ticker)
# Extract chart and ensure it's removed from financial data
price_chart = finance_data.get('chart')
if 'chart' in finance_data:
del finance_data['chart']
# Generate recommendation
recommendation = generate_stock_recommendation(analyzed_articles, finance_data)
return (
convert_to_dataframe(analyzed_articles), # Articles dataframe
finance_data, # Financial data (without chart)
recommendation, # Text recommendation
price_chart # Matplotlib figure
)
except Exception as e:
logging.error(f"Error in analysis: {str(e)}")
return (
pd.DataFrame(),
{"error": str(e)},
"Analysis failed",
None
)
# Update the Gradio interface (change the output component type)
with gr.Blocks(theme=gr.themes.Default()) as iface:
gr.Markdown("# Advanced Trading Analytics Suite")
with gr.Row():
input_asset = gr.Textbox(
label="Asset Name/Ticker",
placeholder="Enter stock name or symbol...",
max_lines=1
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Tabs():
with gr.TabItem("Sentiment Analysis"):
gr.Markdown("## News Sentiment Analysis")
articles_output = gr.HTML(label="Analyzed News Articles") # Changed to HTML component
with gr.TabItem("Technical Analysis"):
price_chart = gr.Plot(label="Price Analysis")
ta_json = gr.JSON(label="Technical Indicators")
with gr.TabItem("Recommendation"):
recommendation_output = gr.Textbox(
lines=8,
label="Analysis Summary",
interactive=False
)
analyze_btn.click(
analyze_asset_sentiment,
inputs=[input_asset],
outputs=[articles_output, ta_json, recommendation_output, price_chart]
)
logging.info("Launching enhanced Gradio interface")
iface.queue().launch()