Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.
|
4 |
from transformers import AutoTokenizer
|
5 |
from model import TransformerModel
|
6 |
import gradio as gr
|
@@ -9,7 +9,6 @@ import gradio as gr
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
|
10 |
|
11 |
def load_quantized_model(checkpoint_path):
|
12 |
-
# Define the model architecture
|
13 |
model = TransformerModel(
|
14 |
vocab_size=49152,
|
15 |
hidden_size=576,
|
@@ -23,29 +22,37 @@ def load_quantized_model(checkpoint_path):
|
|
23 |
tie_word_embeddings=True,
|
24 |
)
|
25 |
|
26 |
-
# Dynamic
|
27 |
-
model.embed_tokens = torch.
|
28 |
model.embed_tokens, {nn.Embedding}, dtype=torch.qint8
|
29 |
)
|
30 |
-
model.embed_positions = torch.
|
31 |
model.embed_positions, {nn.Embedding}, dtype=torch.qint8
|
32 |
)
|
33 |
|
34 |
-
# Static
|
35 |
-
model.qconfig = torch.
|
36 |
-
model = torch.
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Load checkpoint
|
40 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
41 |
model.load_state_dict(checkpoint)
|
42 |
-
|
43 |
model.eval()
|
44 |
return model
|
45 |
|
46 |
|
47 |
# Load the quantized model
|
48 |
-
model = load_quantized_model("
|
49 |
|
50 |
# Function to generate text
|
51 |
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.quantization # <--- Use the older namespace for default_qconfig
|
4 |
from transformers import AutoTokenizer
|
5 |
from model import TransformerModel
|
6 |
import gradio as gr
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
|
10 |
|
11 |
def load_quantized_model(checkpoint_path):
|
|
|
12 |
model = TransformerModel(
|
13 |
vocab_size=49152,
|
14 |
hidden_size=576,
|
|
|
22 |
tie_word_embeddings=True,
|
23 |
)
|
24 |
|
25 |
+
# Dynamic quant for embeddings
|
26 |
+
model.embed_tokens = torch.quantization.quantize_dynamic(
|
27 |
model.embed_tokens, {nn.Embedding}, dtype=torch.qint8
|
28 |
)
|
29 |
+
model.embed_positions = torch.quantization.quantize_dynamic(
|
30 |
model.embed_positions, {nn.Embedding}, dtype=torch.qint8
|
31 |
)
|
32 |
|
33 |
+
# Static quant config for the rest of the model
|
34 |
+
model.qconfig = torch.quantization.get_default_qconfig("fbgemm") # CPU
|
35 |
+
model = torch.quantization.prepare(model, inplace=False)
|
36 |
+
|
37 |
+
#
|
38 |
+
# >>> RUN CALIBRATION HERE (forward pass with sample data) <<<
|
39 |
+
# e.g. with torch.no_grad():
|
40 |
+
# for input_ids in some_calibration_loader:
|
41 |
+
# outputs = model(input_ids)
|
42 |
+
#
|
43 |
+
|
44 |
+
model = torch.quantization.convert(model, inplace=False)
|
45 |
|
46 |
# Load checkpoint
|
47 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
48 |
model.load_state_dict(checkpoint)
|
49 |
+
|
50 |
model.eval()
|
51 |
return model
|
52 |
|
53 |
|
54 |
# Load the quantized model
|
55 |
+
model = load_quantized_model("quantized_model.pt")
|
56 |
|
57 |
# Function to generate text
|
58 |
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50):
|