Spaces:
Sleeping
Sleeping
File size: 11,348 Bytes
3afe7b3 b789c6c 3afe7b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
class RMSNorm(nn.Module):
"""
Root Mean Square Layer Normalization (RMSNorm).
"""
def __init__(self, hidden_size: int, eps: float = 1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
return self.weight * x
class RotaryPositionalEmbedding(nn.Module):
"""
Rotary Positional Embedding (RoPE) for transformers.
"""
def __init__(self, dim: int, theta: float = 10000.0):
super().__init__()
self.dim = dim
self.theta = theta
def forward(self, x: torch.Tensor, seq_len: int) -> torch.Tensor:
"""
Apply rotary positional embedding to the input tensor.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, num_heads, head_dim).
seq_len (int): Sequence length.
Returns:
torch.Tensor: Output tensor with rotary positional embeddings applied.
"""
batch_size, seq_len, num_heads, head_dim = x.shape
# Generate position indices
position = torch.arange(seq_len, dtype=torch.float32, device=x.device).unsqueeze(-1)
# Generate frequencies
freqs = torch.exp(
torch.arange(0, head_dim, 2, dtype=torch.float32, device=x.device) * -(torch.log(torch.tensor(self.theta)) / head_dim)
)
# Compute sinusoids
sinusoid = position * freqs
sin = torch.sin(sinusoid)
cos = torch.cos(sinusoid)
# Reshape sin and cos to match the input tensor's shape
sin = sin.unsqueeze(0).unsqueeze(2) # Shape: (1, seq_len, 1, head_dim // 2)
cos = cos.unsqueeze(0).unsqueeze(2) # Shape: (1, seq_len, 1, head_dim // 2)
# Apply rotary embeddings
x_rotated = x.clone()
x_rotated[..., 0::2] = x[..., 0::2] * cos - x[..., 1::2] * sin
x_rotated[..., 1::2] = x[..., 1::2] * cos + x[..., 0::2] * sin
return x_rotated
from torch.utils.checkpoint import checkpoint
class TransformerBlock(nn.Module):
"""
A single transformer block with self-attention and feed-forward layers.
"""
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
intermediate_size: int,
num_key_value_heads: int,
rms_norm_eps: float,
hidden_act: str = "silu",
):
super().__init__()
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = hidden_size // num_attention_heads
# Ensure the hidden size is divisible by the number of attention heads
if hidden_size % num_attention_heads != 0:
raise ValueError(
f"hidden_size ({hidden_size}) must be divisible by num_attention_heads ({num_attention_heads})"
)
# Self-attention layers
self.q_proj = nn.Linear(hidden_size, hidden_size)
self.k_proj = nn.Linear(hidden_size, num_key_value_heads * self.head_dim)
self.v_proj = nn.Linear(hidden_size, num_key_value_heads * self.head_dim)
self.o_proj = nn.Linear(hidden_size, hidden_size)
# Feed-forward layers
self.gate_proj = nn.Linear(hidden_size, intermediate_size)
self.up_proj = nn.Linear(hidden_size, intermediate_size)
self.down_proj = nn.Linear(intermediate_size, hidden_size)
# Normalization layers
self.input_norm = RMSNorm(hidden_size, eps=rms_norm_eps)
self.post_attention_norm = RMSNorm(hidden_size, eps=rms_norm_eps)
# Activation function
self.act = nn.SiLU() if hidden_act == "silu" else nn.GELU()
# Rotary positional embedding
self.rope = RotaryPositionalEmbedding(self.head_dim)
def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
def create_custom_forward(module):
def custom_forward(*inputs):
return module._forward(inputs[0], inputs[1])
return custom_forward
# Use gradient checkpointing
return checkpoint(create_custom_forward(self), x, attention_mask)
def _forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
# Self-attention
residual = x
x = self.input_norm(x)
# Project inputs to query, key, and value
batch_size, seq_len, _ = x.shape
# Reshape queries for multi-head attention
q = self.q_proj(x).view(batch_size, seq_len, self.num_attention_heads, self.head_dim)
# Reshape keys and values for key-value heads
k = self.k_proj(x).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
v = self.v_proj(x).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
# Apply rotary positional embedding
q = self.rope(q, seq_len)
k = self.rope(k, seq_len)
# Scaled dot-product attention
attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask=attention_mask)
attn_output = attn_output.transpose(1, 2).reshape(batch_size, seq_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
# Add residual connection
x = residual + attn_output
# Feed-forward network
residual = x
x = self.post_attention_norm(x)
gate = self.act(self.gate_proj(x))
up = self.up_proj(x)
ff_output = self.down_proj(gate * up)
# Add residual connection
x = residual + ff_output
return x
class TransformerModel(nn.Module):
def __init__(
self,
vocab_size: int,
hidden_size: int,
num_hidden_layers: int,
num_attention_heads: int,
intermediate_size: int,
num_key_value_heads: int,
max_position_embeddings: int,
rms_norm_eps: float,
hidden_act: str = "silu",
tie_word_embeddings: bool = True,
):
super().__init__()
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.max_position_embeddings = max_position_embeddings
# Embedding layers (skip quantization for these)
self.embed_tokens = nn.Embedding(vocab_size, hidden_size)
self.embed_positions = nn.Embedding(max_position_embeddings, hidden_size)
# Transformer blocks
self.layers = nn.ModuleList([
TransformerBlock(
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
num_key_value_heads=num_key_value_heads,
rms_norm_eps=rms_norm_eps,
hidden_act=hidden_act,
)
for _ in range(num_hidden_layers)
])
# Final normalization layer
self.final_norm = RMSNorm(hidden_size, eps=rms_norm_eps)
# Output layer (tied to input embeddings if specified)
self.lm_head = nn.Linear(hidden_size, vocab_size, bias=False)
if tie_word_embeddings:
self.lm_head.weight = self.embed_tokens.weight
def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
# Embed tokens and positions
seq_len = input_ids.size(1)
position_ids = torch.arange(seq_len, dtype=torch.long, device=input_ids.device)
token_embeddings = self.embed_tokens(input_ids)
position_embeddings = self.embed_positions(position_ids)
x = token_embeddings + position_embeddings
# Pass through transformer layers
for layer in self.layers:
x = layer(x, attention_mask)
# Final normalization
x = self.final_norm(x)
# Output logits
logits = self.lm_head(x)
return logits
def generate(
self,
input_ids: torch.Tensor,
max_length: int = 50,
temperature: float = 1.0,
top_k: int = 50,
do_sample: bool = True,
) -> torch.Tensor:
"""
Generate text autoregressively.
Args:
input_ids (torch.Tensor): Input token IDs of shape (batch_size, seq_len).
max_length (int): Maximum length of the generated sequence.
temperature (float): Sampling temperature. Higher values mean more random sampling.
top_k (int): Top-k sampling. Only the top-k tokens are considered.
do_sample (bool): Whether to sample from the distribution or take the argmax.
Returns:
torch.Tensor: Generated token IDs of shape (batch_size, max_length).
"""
self.eval()
with torch.no_grad():
for _ in range(max_length - input_ids.size(1)):
# Get the logits for the last token
logits = self(input_ids)[:, -1, :]
# Apply temperature
logits = logits / temperature
# Top-k sampling
if top_k > 0:
top_k_values, top_k_indices = torch.topk(logits, top_k)
logits[logits < top_k_values[:, -1].unsqueeze(-1)] = -float("Inf")
# Convert logits to probabilities
probs = F.softmax(logits, dim=-1)
# Sample or take the argmax
if do_sample:
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(probs, dim=-1, keepdim=True)
# Append the next token to the input_ids
input_ids = torch.cat([input_ids, next_token], dim=-1)
return input_ids
# Create the model based on the configuration
def create_model_from_config(config: dict) -> TransformerModel:
model_config = config["model"]["model_config"]
return TransformerModel(
vocab_size=model_config["vocab_size"],
hidden_size=model_config["hidden_size"],
num_hidden_layers=model_config["num_hidden_layers"],
num_attention_heads=model_config["num_attention_heads"],
intermediate_size=model_config["intermediate_size"],
num_key_value_heads=model_config["num_key_value_heads"],
max_position_embeddings=model_config["max_position_embeddings"],
rms_norm_eps=model_config["rms_norm_eps"],
hidden_act=model_config["hidden_act"],
tie_word_embeddings=model_config["tie_word_embeddings"],
)
# Example usage
if __name__ == "__main__":
import json
# Load the configuration file
with open("config_smollm2_135M.json", "r") as f:
config = json.load(f)
# Create the model
model = create_model_from_config(config)
print(model) |