Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,20 @@
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
-
|
4 |
from einops import rearrange
|
5 |
import gradio as gr
|
6 |
-
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
-
|
9 |
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
10 |
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
13 |
-
model = MambaLMHeadModel.from_pretrained("state-spaces/mamba-2.8b", device=device, dtype=
|
14 |
|
15 |
def pred(text_in, temperature, top_k, top_p, gen_length, cg, return_dict_in_generate, output_scores, enable_timing):
|
16 |
tokens = tokenizer(text_in, return_tensors="pt")
|
17 |
input_ids = tokens.input_ids.to(device=device)
|
18 |
-
|
|
|
19 |
out = model.generate(
|
20 |
input_ids=input_ids,
|
21 |
max_length=max_length,
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
+
import einops
|
4 |
from einops import rearrange
|
5 |
import gradio as gr
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
7 |
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
11 |
+
model = MambaLMHeadModel.from_pretrained("state-spaces/mamba-2.8b", device=device, dtype=torch.float16)
|
12 |
|
13 |
def pred(text_in, temperature, top_k, top_p, gen_length, cg, return_dict_in_generate, output_scores, enable_timing):
|
14 |
tokens = tokenizer(text_in, return_tensors="pt")
|
15 |
input_ids = tokens.input_ids.to(device=device)
|
16 |
+
attn_mask = tokens.attention_mask.to(device=device)
|
17 |
+
max_length = input_ids.shape[1] + genlen
|
18 |
out = model.generate(
|
19 |
input_ids=input_ids,
|
20 |
max_length=max_length,
|