Spaces:
Paused
Paused
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM | |
import torch | |
import gradio as gr | |
import random | |
from textwrap import wrap | |
import spaces | |
def wrap_text(text, width=90): | |
lines = text.split('\n') | |
wrapped_lines = [textwrap.fill(line, width=width) for line in lines] | |
wrapped_text = '\n'.join(wrapped_lines) | |
return wrapped_text | |
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"): | |
# Combine user input and system prompt | |
formatted_input = f"<s> [INST] {example_instruction} [/INST] {example_answer}</s> [INST] {system_prompt} [/INST]" | |
# Encode the input text | |
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False) | |
model_inputs = encodeds.to(device) | |
# Generate a response using the model | |
output = model.generate( | |
**model_inputs, | |
max_length=max_length, | |
use_cache=True, | |
early_stopping=True, | |
bos_token_id=model.config.bos_token_id, | |
eos_token_id=model.config.eos_token_id, | |
pad_token_id=model.config.eos_token_id, | |
temperature=0.1, | |
do_sample=True | |
) | |
# Decode the response | |
response_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response_text | |
# Define the device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Use the base model's ID | |
model_id = "SuperAGI/SAM" | |
tokenizer = AutoTokenizer.from_pretrained(model_id = model_id, trust_remote_code=True) | |
# tokenizer.pad_token = tokenizer.eos_token | |
# tokenizer.padding_side = 'left' | |
# Specify the configuration class for the model | |
#model_config = AutoConfig.from_pretrained(base_model_id) | |
model = MistralForCaumodel = AutoModelForCausalLM.from_pretrained(model_id) | |
class ChatBot: | |
def __init__(self): | |
self.history = [] | |
class ChatBot: | |
def __init__(self): | |
# Initialize the ChatBot class with an empty history | |
self.history = [] | |
def predict(self, user_input, system_prompt="You are an expert medical analyst:"): | |
# Combine the user's input with the system prompt | |
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]" | |
# Encode the formatted input using the tokenizer | |
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt") | |
# Generate a response using the PEFT model | |
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id) | |
# Decode the generated response to text | |
response_text = tokenizer.decode(response[0], skip_special_tokens=True) | |
return response_text # Return the generated response | |
bot = ChatBot() | |
title = "🚀👋🏻Welcome to Tonic's🤖SuperAGI/SAM Chat🚀" | |
description = "SAM is an Agentic-Native LLM that excels at complex reasoning. You can use this Space to test out the current model [Tonic/superagi-sam](https://huggingface.co/Tonic/superagi-sam) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." | |
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]] | |
def main(): | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
example_instruction = gr.Textbox(label="Example Instruction") | |
example_answer = gr.Textbox(label="Example Answer") | |
with gr.Column(): | |
user_input = gr.Textbox(label="Your Question") | |
system_prompt = gr.Textbox(label="System Prompt", value="You are an expert medical analyst:") | |
submit_btn = gr.Button("Submit") | |
output = gr.Textbox(label="Response") | |
submit_btn.click( | |
fn=bot.predict, | |
inputs=[example_instruction, example_answer, user_input, system_prompt], | |
outputs=output | |
) | |
demo.launch() | |
if __name__ == "__main__": | |
main() |