Spaces:
Runtime error
Runtime error
File size: 4,088 Bytes
17d3814 fa55388 17d3814 ad35440 17d3814 c70e8e5 ad35440 17d3814 ad35440 17d3814 ad35440 88bc904 17d3814 ad35440 17d3814 ad35440 574defd ad35440 17d3814 ad35440 17d3814 ad35440 17d3814 ad35440 17d3814 ad35440 17d3814 ad35440 17d3814 ad35440 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import spaces
import gradio as gr
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
title = """# Welcome to 🌟Tonic's✨StarCoder
✨StarCoder StarCoder2-15B model is a 15B parameter model trained on 600+ programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 4+ trillion tokens. The model was trained with NVIDIA NeMo™ Framework using the NVIDIA Eos Supercomputer built with NVIDIA DGX H100 systems. You can build with this endpoint using✨StarCoder available here : [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b). You can also use ✨StarCoder by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/starcoder2?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) Math 🔍 [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
default_system_prompt = """SYSTEM: You are an AI that code. Answer with code."""
model_path = "bigcode/starcoder2-15b"
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
# trust_remote_code=True,
token=hf_token,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# import gradio as gr
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
# checkpoint = "bigcode/starcoder2-15b"
# quantization_config = BitsAndBytesConfig(load_in_8bit=True)
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config).to("cuda")
@spaces.GPU
def generate_text(prompt, temperature, max_length):
inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(inputs, max_length=max_length, top_p=0.9, temperature=temperature)
return tokenizer.decode(outputs[0])
def gradio_app():
with gr.Blocks() as demo:
gr.Markdown(title)
output = gr.Code(label="Generated Code", lines=40)
with gr.Row():
generate_btn = gr.Button("Generate")
with gr.Row():
temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Temperature")
max_length = gr.Slider(minimum=100, maximum=1024, step=10, value=100, label="Generate Length")
with gr.Row():
prompt = gr.Textbox(label="Enter your code prompt", placeholder="def print_hello_world():")
generate_btn.click(
fn=generate_text,
inputs=[prompt, temperature, max_length],
outputs=output
)
demo.launch() |