|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline |
|
import torch |
|
from threading import Thread |
|
import gradio as gr |
|
import spaces |
|
import re |
|
import logging |
|
from peft import PeftModel |
|
|
|
|
|
|
|
|
|
|
|
LATEX_DELIMS = [ |
|
{"left": "$$", "right": "$$", "display": True}, |
|
{"left": "$", "right": "$", "display": False}, |
|
{"left": "\\[", "right": "\\]", "display": True}, |
|
{"left": "\\(", "right": "\\)", "display": False}, |
|
] |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
try: |
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"openai/gpt-oss-20b", |
|
torch_dtype="auto", |
|
device_map="auto", |
|
attn_implementation="kernels-community/vllm-flash-attn3" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b") |
|
|
|
|
|
try: |
|
model = PeftModel.from_pretrained(base_model, "Tonic/gpt-oss-20b-multilingual-reasoner") |
|
print("โ
LoRA model loaded successfully!") |
|
except Exception as lora_error: |
|
print(f"โ ๏ธ LoRA adapter failed to load: {lora_error}") |
|
print("๐ Falling back to base model...") |
|
model = base_model |
|
|
|
except Exception as e: |
|
print(f"โ Error loading model: {e}") |
|
raise e |
|
|
|
def format_conversation_history(chat_history): |
|
messages = [] |
|
for item in chat_history: |
|
role = item["role"] |
|
content = item["content"] |
|
if isinstance(content, list): |
|
content = content[0]["text"] if content and "text" in content[0] else str(content) |
|
messages.append({"role": role, "content": content}) |
|
return messages |
|
|
|
def format_analysis_response(text): |
|
"""Enhanced response formatting with better structure and LaTeX support.""" |
|
|
|
m = re.search(r"analysis(.*?)assistantfinal", text, re.DOTALL | re.IGNORECASE) |
|
if m: |
|
reasoning = m.group(1).strip() |
|
response = text.split("assistantfinal", 1)[-1].strip() |
|
|
|
|
|
reasoning = re.sub(r'^analysis\s*', '', reasoning, flags=re.IGNORECASE).strip() |
|
|
|
|
|
formatted = ( |
|
f"**๐ค Analysis & Reasoning:**\n\n" |
|
f"*{reasoning}*\n\n" |
|
f"---\n\n" |
|
f"**๐ฌ Final Response:**\n\n{response}" |
|
) |
|
|
|
|
|
if formatted.count("$") % 2: |
|
formatted += "$" |
|
|
|
return formatted |
|
|
|
|
|
cleaned = re.sub(r'^analysis\s*', '', text, flags=re.IGNORECASE).strip() |
|
if cleaned.count("$") % 2: |
|
cleaned += "$" |
|
return cleaned |
|
|
|
@spaces.GPU(duration=60) |
|
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty): |
|
if not input_data.strip(): |
|
yield "Please enter a prompt." |
|
return |
|
|
|
|
|
logging.info(f"[User] {input_data}") |
|
logging.info(f"[System] {system_prompt} | Temp={temperature} | Max tokens={max_new_tokens}") |
|
|
|
new_message = {"role": "user", "content": input_data} |
|
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else [] |
|
processed_history = format_conversation_history(chat_history) |
|
messages = system_message + processed_history + [new_message] |
|
prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
|
|
generation_kwargs = { |
|
"max_new_tokens": max_new_tokens, |
|
"do_sample": True, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"top_k": top_k, |
|
"repetition_penalty": repetition_penalty, |
|
"pad_token_id": tokenizer.eos_token_id, |
|
"streamer": streamer, |
|
"use_cache": True |
|
} |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
|
|
|
thread = Thread(target=model.generate, kwargs={**inputs, **generation_kwargs}) |
|
thread.start() |
|
|
|
|
|
collected_text = "" |
|
buffer = "" |
|
yielded_once = False |
|
|
|
try: |
|
for chunk in streamer: |
|
if not chunk: |
|
continue |
|
|
|
collected_text += chunk |
|
buffer += chunk |
|
|
|
|
|
if not yielded_once: |
|
yield chunk |
|
buffer = "" |
|
yielded_once = True |
|
continue |
|
|
|
|
|
if "\n" in buffer or len(buffer) > 150: |
|
|
|
partial_formatted = format_analysis_response(collected_text) |
|
yield partial_formatted |
|
buffer = "" |
|
|
|
|
|
final_formatted = format_analysis_response(collected_text) |
|
yield final_formatted |
|
|
|
except Exception as e: |
|
logging.exception("Generation streaming failed") |
|
yield f"โ Error during generation: {e}" |
|
|
|
demo = gr.ChatInterface( |
|
fn=generate_response, |
|
additional_inputs=[ |
|
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048), |
|
gr.Textbox( |
|
label="System Prompt", |
|
value="You are a helpful assistant. Reasoning: medium", |
|
lines=4, |
|
placeholder="Change system prompt" |
|
), |
|
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), |
|
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), |
|
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), |
|
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0) |
|
], |
|
examples=[ |
|
[{"text": "Explain Newton's laws clearly and concisely with mathematical formulas"}], |
|
[{"text": "Write a Python function to calculate the Fibonacci sequence"}], |
|
[{"text": "What are the benefits of open weight AI models? Include analysis."}], |
|
[{"text": "Solve this equation: $x^2 + 5x + 6 = 0$"}], |
|
], |
|
cache_examples=False, |
|
type="messages", |
|
description=""" |
|
|
|
# ๐๐ปโโ๏ธWelcome to ๐Tonic's gpt-oss-20b Multilingual Reasoner Demo ! |
|
|
|
โจ **Enhanced Features:** |
|
- ๐ง **Advanced Reasoning**: Detailed analysis and step-by-step thinking |
|
- ๐ **LaTeX Support**: Mathematical formulas rendered beautifully (use `$` or `$$`) |
|
- ๐ฏ **Improved Formatting**: Clear separation of reasoning and final responses |
|
- ๐ **Smart Logging**: Better error handling and request tracking |
|
|
|
๐ก **Usage Tips:** |
|
- Adjust reasoning level in system prompt (e.g., "Reasoning: high") |
|
- Use LaTeX for math: `$E = mc^2$` or `$$\\int x^2 dx$$` |
|
- Wait a couple of seconds initially for model loading |
|
""", |
|
fill_height=True, |
|
textbox=gr.Textbox( |
|
label="Query Input", |
|
placeholder="Type your prompt (supports LaTeX: $x^2 + y^2 = z^2$)" |
|
), |
|
stop_btn="Stop Generation", |
|
multimodal=False, |
|
theme=gr.themes.Soft() |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |