Spaces:
Sleeping
Sleeping
improve submission
Browse files- requirements.txt +11 -12
- submission_script.py +5 -2
- tasks/text.py +103 -82
requirements.txt
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
-
fastapi
|
2 |
-
uvicorn
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
requests
|
10 |
-
|
11 |
-
|
12 |
-
transformers
|
13 |
accelerate
|
|
|
1 |
+
fastapi==0.103.2
|
2 |
+
uvicorn==0.23.2
|
3 |
+
transformers==4.34.0
|
4 |
+
torch==2.0.1
|
5 |
+
datasets==2.14.5
|
6 |
+
scikit-learn==1.3.1
|
7 |
+
codecarbon==2.3.1
|
8 |
+
python-dotenv==1.0.0
|
9 |
+
requests==2.31.0
|
10 |
+
numpy==1.24.3
|
11 |
+
pydantic==2.4.2
|
|
|
12 |
accelerate
|
submission_script.py
CHANGED
@@ -14,7 +14,6 @@ def evaluate_text_model(space_url: str, max_retries=3, retry_delay=5):
|
|
14 |
"test_seed": 42,
|
15 |
}
|
16 |
|
17 |
-
# Construct base URL and API endpoints
|
18 |
if "localhost" in space_url:
|
19 |
base_url = space_url
|
20 |
else:
|
@@ -63,7 +62,11 @@ def evaluate_text_model(space_url: str, max_retries=3, retry_delay=5):
|
|
63 |
return response.json()
|
64 |
else:
|
65 |
print(f"Error: Status {response.status_code}")
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
if attempt < max_retries - 1:
|
68 |
print(f"Waiting {retry_delay} seconds before retry...")
|
69 |
time.sleep(retry_delay)
|
|
|
14 |
"test_seed": 42,
|
15 |
}
|
16 |
|
|
|
17 |
if "localhost" in space_url:
|
18 |
base_url = space_url
|
19 |
else:
|
|
|
62 |
return response.json()
|
63 |
else:
|
64 |
print(f"Error: Status {response.status_code}")
|
65 |
+
try:
|
66 |
+
error_detail = response.json()
|
67 |
+
print(f"Error detail: {error_detail}")
|
68 |
+
except:
|
69 |
+
print(f"Response: {response.text}")
|
70 |
if attempt < max_retries - 1:
|
71 |
print(f"Waiting {retry_delay} seconds before retry...")
|
72 |
time.sleep(retry_delay)
|
tasks/text.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
@@ -5,10 +6,15 @@ from sklearn.metrics import accuracy_score
|
|
5 |
import torch
|
6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
from torch.utils.data import Dataset, DataLoader
|
|
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
|
|
|
|
|
|
|
|
12 |
router = APIRouter()
|
13 |
|
14 |
DESCRIPTION = "Climate Guard Toxic Agent Model"
|
@@ -47,93 +53,108 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
47 |
"""
|
48 |
Evaluate text classification for climate disinformation detection.
|
49 |
"""
|
50 |
-
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
# Convert string labels to integers
|
68 |
-
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
69 |
-
|
70 |
-
# Get test dataset
|
71 |
-
test_dataset = dataset["test"]
|
72 |
-
|
73 |
-
# Start tracking emissions
|
74 |
-
tracker.start()
|
75 |
-
|
76 |
-
try:
|
77 |
-
# Load model and tokenizer
|
78 |
-
model_name = "Tonic/climate-guard-toxic-agent"
|
79 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
80 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
81 |
-
|
82 |
-
# Prepare dataset
|
83 |
-
test_data = TextDataset(
|
84 |
-
texts=test_dataset["text"],
|
85 |
-
labels=test_dataset["label"],
|
86 |
-
tokenizer=tokenizer
|
87 |
-
)
|
88 |
|
89 |
-
|
|
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
-
model = model.to(device)
|
94 |
-
model.eval()
|
95 |
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
"
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
}
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
137 |
except Exception as e:
|
138 |
-
|
139 |
-
raise e
|
|
|
1 |
+
# tasks/text.py
|
2 |
from fastapi import APIRouter
|
3 |
from datetime import datetime
|
4 |
from datasets import load_dataset
|
|
|
6 |
import torch
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
from torch.utils.data import Dataset, DataLoader
|
9 |
+
import logging
|
10 |
|
11 |
from .utils.evaluation import TextEvaluationRequest
|
12 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
13 |
|
14 |
+
# Set up logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
router = APIRouter()
|
19 |
|
20 |
DESCRIPTION = "Climate Guard Toxic Agent Model"
|
|
|
53 |
"""
|
54 |
Evaluate text classification for climate disinformation detection.
|
55 |
"""
|
56 |
+
try:
|
57 |
+
logger.info("Starting evaluation")
|
58 |
+
username, space_url = get_space_info()
|
59 |
|
60 |
+
# Label mapping
|
61 |
+
LABEL_MAPPING = {
|
62 |
+
"0_not_relevant": 0,
|
63 |
+
"1_not_happening": 1,
|
64 |
+
"2_not_human": 2,
|
65 |
+
"3_not_bad": 3,
|
66 |
+
"4_solutions_harmful_unnecessary": 4,
|
67 |
+
"5_science_unreliable": 5,
|
68 |
+
"6_proponents_biased": 6,
|
69 |
+
"7_fossil_fuels_needed": 7
|
70 |
+
}
|
71 |
|
72 |
+
logger.info("Loading dataset")
|
73 |
+
# Load dataset
|
74 |
+
dataset = load_dataset(request.dataset_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
# Convert string labels to integers
|
77 |
+
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
78 |
|
79 |
+
# Get test dataset
|
80 |
+
test_dataset = dataset["test"]
|
|
|
|
|
81 |
|
82 |
+
logger.info("Starting emissions tracking")
|
83 |
+
# Start tracking emissions
|
84 |
+
tracker.start()
|
85 |
|
86 |
+
try:
|
87 |
+
# Load model and tokenizer
|
88 |
+
logger.info("Loading model and tokenizer")
|
89 |
+
model_name = "Tonic/climate-guard-toxic-agent"
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
91 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(LABEL_MAPPING))
|
92 |
+
|
93 |
+
# Prepare dataset
|
94 |
+
logger.info("Preparing dataset")
|
95 |
+
test_data = TextDataset(
|
96 |
+
texts=test_dataset["text"],
|
97 |
+
labels=test_dataset["label"],
|
98 |
+
tokenizer=tokenizer
|
99 |
+
)
|
100 |
+
|
101 |
+
test_loader = DataLoader(test_data, batch_size=16)
|
102 |
+
|
103 |
+
# Model inference
|
104 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
105 |
+
logger.info(f"Using device: {device}")
|
106 |
+
model = model.to(device)
|
107 |
+
model.eval()
|
108 |
+
|
109 |
+
predictions = []
|
110 |
+
ground_truth = []
|
111 |
+
|
112 |
+
logger.info("Running inference")
|
113 |
+
with torch.no_grad():
|
114 |
+
for batch in test_loader:
|
115 |
+
input_ids = batch['input_ids'].to(device)
|
116 |
+
attention_mask = batch['attention_mask'].to(device)
|
117 |
+
labels = batch['labels'].to(device)
|
118 |
+
|
119 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
120 |
+
_, predicted = torch.max(outputs.logits, 1)
|
121 |
+
|
122 |
+
predictions.extend(predicted.cpu().numpy())
|
123 |
+
ground_truth.extend(labels.cpu().numpy())
|
124 |
+
|
125 |
+
# Calculate accuracy
|
126 |
+
accuracy = accuracy_score(ground_truth, predictions)
|
127 |
+
logger.info(f"Accuracy: {accuracy}")
|
128 |
+
|
129 |
+
# Stop tracking emissions
|
130 |
+
emissions_data = tracker.stop()
|
131 |
+
|
132 |
+
# Prepare results
|
133 |
+
results = {
|
134 |
+
"username": username,
|
135 |
+
"space_url": space_url,
|
136 |
+
"submission_timestamp": datetime.now().isoformat(),
|
137 |
+
"model_description": DESCRIPTION,
|
138 |
+
"accuracy": float(accuracy),
|
139 |
+
"energy_consumed_wh": float(emissions_data.energy_consumed * 1000),
|
140 |
+
"emissions_gco2eq": float(emissions_data.emissions * 1000),
|
141 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
142 |
+
"api_route": ROUTE,
|
143 |
+
"dataset_config": {
|
144 |
+
"dataset_name": request.dataset_name,
|
145 |
+
"test_size": request.test_size,
|
146 |
+
"test_seed": request.test_seed
|
147 |
+
}
|
148 |
}
|
149 |
+
|
150 |
+
logger.info("Evaluation completed successfully")
|
151 |
+
return results
|
152 |
+
|
153 |
+
except Exception as e:
|
154 |
+
logger.error(f"Error during evaluation: {str(e)}")
|
155 |
+
tracker.stop()
|
156 |
+
raise e
|
157 |
+
|
158 |
except Exception as e:
|
159 |
+
logger.error(f"Error in evaluate_text: {str(e)}")
|
160 |
+
raise HTTPException(status_code=500, detail=str(e))
|