File size: 2,147 Bytes
2f369b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr

title = """Welcome to Tonic's Lite Llama On-Device Chat!"""
description = """
You can use this Space to test out the current model [ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T) You can also use Lite Llama On-Device Chat by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/Litellama?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 
Join us :  TeamTonic is always making cool demos! Join our active builder's community on  Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
"""
model_path = 'ahxt/LiteLlama-460M-1T'
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.eval()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def generate_text(prompt):
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    tokens = model.generate(input_ids, max_length=20)
    return tokenizer.decode(tokens[0].tolist(), skip_special_tokens=True)

iface = gr.Interface(
    fn=generate_text,
    inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
    outputs="text",
    title=title,
    description=description
)

iface.launch()