# Copyright 2024 Zhenwei Shao and MILVLG team. # Licensed under the Apache License, Version 2.0. from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from transformers import AutoConfig, AutoModelForCausalLM from .phi2.modeling_phi import PhiConfig, PhiModel, PhiForCausalLM,PhiPreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM class FlashSlothConfig(PhiConfig): model_type = "flashsloth" def __init__(self, **kwargs): super().__init__(**kwargs) self.image_token_index = getattr(self, "image_token_index", 50297) self.image_token = getattr(self, "image_token", "") class FlashSlothModel(LlavaMetaModel, PhiModel): config_class = FlashSlothConfig def __init__(self, config: FlashSlothConfig): super(FlashSlothModel, self).__init__(config) class FlashSlothForCausalLM(PhiPreTrainedModel, LlavaMetaForCausalLM): """FlashSloth for Causal Language Modeling.""" # _keys_to_ignore_on_load_missing = [""] # _keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] config_class = FlashSlothConfig def __init__(self, config: FlashSlothConfig) -> None: super().__init__(config) self.model = FlashSlothModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True) config =self.config self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self) -> nn.Linear: return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: self.lm_head = new_embeddings def get_model(self): return self.model def get_decoder(self): return self.model def set_decoder(self, decoder): self.model = decoder def image_preprocess(self, images): return self.get_vision_tower().image_processor(images)['pixel_values'] def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict learnable_tokens = self.model.get_learnabletoken() if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels, insert_place, image_features, learnable_token_len, modal, question_token_ranges ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images, learnable_tokens, 'phi2', ) outputs = self.model( input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, insert_place=insert_place, image_features=image_features, learnable_token_len=learnable_token_len, modal = modal, question_token_ranges = question_token_ranges ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: loss = None output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: _inputs['images'] = images return _inputs AutoConfig.register("flashsloth", FlashSlothConfig) AutoModelForCausalLM.register(FlashSlothConfig, FlashSlothForCausalLM)