File size: 5,711 Bytes
b0b2441
 
 
 
 
 
 
 
 
 
 
 
 
 
39a3261
 
b0b2441
 
 
 
 
b973fba
 
b0b2441
b973fba
 
b0b2441
b973fba
 
 
 
b0b2441
b973fba
 
 
 
 
 
 
 
 
 
 
b0b2441
 
b973fba
b0b2441
 
 
 
 
 
 
 
 
 
39a3261
b0b2441
 
 
 
39a3261
b0b2441
 
39a3261
b0b2441
39a3261
b0b2441
 
 
 
 
 
 
 
 
 
39a3261
 
b0b2441
 
 
 
 
 
39a3261
b0b2441
 
 
39a3261
b0b2441
 
39a3261
b0b2441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39a3261
 
b0b2441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b973fba
b0b2441
 
 
b973fba
 
 
 
 
 
 
b0b2441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b973fba
b0b2441
 
 
39a3261
 
c545e2f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import torch
from flashsloth.constants import (
    IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN, LEARNABLE_TOKEN, LEARNABLE_TOKEN_INDEX
)
from flashsloth.conversation import conv_templates, SeparatorStyle
from flashsloth.model.builder import load_pretrained_model
from flashsloth.utils import disable_torch_init
from flashsloth.mm_utils import (
    tokenizer_image_token, process_images, process_images_hd_inference,
    get_model_name_from_path, KeywordsStoppingCriteria
)
from PIL import Image
import gradio as gr

from transformers import TextIteratorStreamer
from threading import Thread

disable_torch_init()

MODEL_PATH_HD = "Tongbo/FlashSloth_HD-3.2B"
MODEL_PATH_NEW = "Tongbo/FlashSloth-3.2B"

model_name_hd = get_model_name_from_path(MODEL_PATH_HD)
model_name_new = get_model_name_from_path(MODEL_PATH_NEW)

models = {
    "FlashSloth HD": load_pretrained_model(MODEL_PATH_HD, None, model_name_hd),
    "FlashSloth": load_pretrained_model(MODEL_PATH_NEW, None, model_name_new)
}

for key in models:
    tokenizer, model, image_processor, context_len = models[key]
    model.to('cuda')
    model.eval()

def generate_description(image, prompt_text, temperature, top_p, max_tokens, selected_model):
    """
    生成图片描述的函数,支持流式输出,并根据选择的模型进行处理。
    新增参数:
      - selected_model: 用户选择的模型名称
    """
    keywords = ['</s>']

    tokenizer, model, image_processor, context_len = models[selected_model]

    text = DEFAULT_IMAGE_TOKEN + '\n' + prompt_text
    text = text + LEARNABLE_TOKEN

    image = image.convert('RGB')
    if model.config.image_hd:
        image_tensor = process_images_hd_inference([image], image_processor, model.config)[0]
    else:
        image_tensor = process_images([image], image_processor, model.config)[0]
    image_tensor = image_tensor.unsqueeze(0).to(dtype=torch.float16, device='cuda', non_blocking=True)

    conv = conv_templates["phi2"].copy()
    conv.append_message(conv.roles[0], text)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
    input_ids = input_ids.unsqueeze(0).to(device='cuda', non_blocking=True)

    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    streamer = TextIteratorStreamer(
        tokenizer=tokenizer, 
        skip_prompt=True, 
        skip_special_tokens=True
    )

    generation_kwargs = dict(
        inputs=input_ids,
        images=image_tensor,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        max_new_tokens=int(max_tokens),  
        use_cache=True,
        eos_token_id=tokenizer.eos_token_id,
        stopping_criteria=[stopping_criteria],
        streamer=streamer            
    )

    def _generate():
        with torch.inference_mode():
            model.generate(**generation_kwargs)

    generation_thread = Thread(target=_generate)
    generation_thread.start()

    partial_text = ""
    for new_text in streamer:
        partial_text += new_text
        yield partial_text

    generation_thread.join()

custom_css = """
<style>
/* 增大标题字体 */
#title {
    font-size: 80px !important;
    text-align: center;
    margin-bottom: 20px;
}

/* 增大描述文字字体 */
#description {
    font-size: 24px !important;
    text-align: center;
    margin-bottom: 40px;
}

/* 增大标签和输入框的字体 */
.gradio-container * {
    font-size: 18px !important;
}

/* 增大按钮字体 */
button {
    font-size: 20px !important;
    padding: 10px 20px;
}

/* 增大输出文本的字体 */
.output_text {
    font-size: 20px !important;
}
</style>
"""

with gr.Blocks(css=custom_css) as demo:
    gr.HTML(custom_css)
    gr.HTML("<h1 style='font-size:70px; text-align:center;'>FlashSloth 多模态大模型 Demo</h1>")

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="上传图片")

            temperature_slider = gr.Slider(
                minimum=0.01, 
                maximum=1.0, 
                step=0.05, 
                value=0.7, 
                label="Temperature"
            )
            topp_slider = gr.Slider(
                minimum=0.01, 
                maximum=1.0, 
                step=0.05, 
                value=0.9, 
                label="Top-p"
            )
            maxtoken_slider = gr.Slider(
                minimum=64, 
                maximum=3072, 
                step=1, 
                value=3072, 
                label="Max Tokens"
            )
            
            model_dropdown = gr.Dropdown(
                choices=list(models.keys()),
                value=list(models.keys())[0],
                label="选择模型",
                type="value"
            )
            
        with gr.Column(scale=1):
            prompt_input = gr.Textbox(
                lines=3, 
                placeholder="Describe this photo in detail.", 
                label="问题提示"
            )
            submit_button = gr.Button("生成答案", variant="primary")

            output_text = gr.Textbox(
                label="生成的答案", 
                interactive=False, 
                lines=15, 
                elem_classes=["output_text"]
            )

    submit_button.click(
        fn=generate_description, 
        inputs=[image_input, prompt_input, temperature_slider, topp_slider, maxtoken_slider, model_dropdown], 
        outputs=output_text, 
        show_progress=True
    )

if __name__ == "__main__":
    demo.queue().launch()