File size: 6,624 Bytes
cab20ec
 
 
 
 
c04ece2
4ee4ca0
 
d8e93c4
 
 
c8d673b
cab20ec
 
4ee4ca0
 
 
 
 
cab20ec
4ee4ca0
6325d94
cab20ec
 
6325d94
cab20ec
 
 
4ee4ca0
 
 
 
 
537021a
4ee4ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ece2
35d1c40
4ee4ca0
 
 
 
 
 
 
c04ece2
 
4ee4ca0
c04ece2
4ee4ca0
c04ece2
4ee4ca0
 
 
c04ece2
4ee4ca0
 
c04ece2
4ee4ca0
 
c04ece2
4ee4ca0
 
 
 
 
 
c04ece2
4ee4ca0
 
 
 
 
c04ece2
4ee4ca0
c04ece2
4ee4ca0
 
 
c04ece2
4ee4ca0
 
 
c04ece2
4ee4ca0
c04ece2
4ee4ca0
 
 
 
 
c04ece2
4ee4ca0
 
 
 
 
c04ece2
4ee4ca0
 
 
 
c04ece2
4ee4ca0
c04ece2
4ee4ca0
 
7d6fc0e
4ee4ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
c8d673b
4ee4ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8d673b
 
4ee4ca0
c8d673b
4ee4ca0
c8d673b
 
 
d8e93c4
3048271
c8d673b
 
4ee4ca0
c8d673b
4ee4ca0
c8d673b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import tempfile
import os
import dash
from dash import dcc
from dash import html
from dash import dash_table
import gradio as gr
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans, DBSCAN
from sklearn.metrics import classification_report, accuracy_score, silhouette_score
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE

# Suppress specific FutureWarnings
warnings.filterwarnings("ignore", category=FutureWarning)

# Set seaborn style for better aesthetics
sns.set(style="whitegrid")

def enhanced_preprocessing(df):
    # Handling missing values
    df = df.fillna('Unknown')
    
    # Encoding categorical features
    categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
    for col in categorical_cols:
        if len(df[col].unique()) < 20:  # Label Encoding for columns with low cardinality
            label_encoder = LabelEncoder()
            df[col] = label_encoder.fit_transform(df[col])
        else:  # One-Hot Encoding for high-cardinality features
            one_hot = pd.get_dummies(df[col], prefix=col)
            df = pd.concat([df, one_hot], axis=1).drop(col, axis=1)
            
    # Vectorizing free-text columns (example: interventions column)
    if 'interventions' in df.columns:
        tfidf = TfidfVectorizer()
        tfidf_matrix = tfidf.fit_transform(df['interventions'])
        tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=tfidf.get_feature_names_out())
        df = pd.concat([df, tfidf_df], axis=1).drop('interventions', axis=1)
    
    return df

def calculate_correlations(df, threshold=0.3):
    correlations = df.corr()
    significant_corr = correlations[abs(correlations) > threshold].stack().reset_index()
    significant_corr = significant_corr[significant_corr['level_0'] != significant_corr['level_1']]
    significant_corr.columns = ['Feature 1', 'Feature 2', 'Correlation']
    
    return significant_corr

def perform_clustering(df):
    # Normalize the data for clustering
    scaler = StandardScaler()
    df_scaled = scaler.fit_transform(df)

    # Determine best clustering method based on dataset characteristics
    kmeans = KMeans(n_clusters=4, random_state=42)
    dbscan = DBSCAN(eps=0.5, min_samples=5)

    kmeans_labels = kmeans.fit_predict(df_scaled)
    dbscan_labels = dbscan.fit_predict(df_scaled)

    kmeans_score = silhouette_score(df_scaled, kmeans_labels)
    dbscan_score = silhouette_score(df_scaled, dbscan_labels) if len(set(dbscan_labels)) > 1 else -1

    if kmeans_score > dbscan_score:
        df['Cluster'] = kmeans_labels
        best_model = 'K-Means'
    else:
        df['Cluster'] = dbscan_labels
        best_model = 'DBSCAN'

    # Use PCA for visualization
    pca = PCA(n_components=2)
    pca_components = pca.fit_transform(df_scaled)
    df['PCA1'] = pca_components[:, 0]
    df['PCA2'] = pca_components[:, 1]

    return df, best_model

def perform_predictions(df):
    results = []
    target_cols = [col for col in df.columns if col in ['skip_class', 'final_grade']]

    for target in target_cols:
        X = df.drop(target, axis=1)
        y = df[target]

        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

        # Model 1: Random Forest
        rf_model = RandomForestClassifier(random_state=42)
        rf_model.fit(X_train, y_train)
        rf_pred = rf_model.predict(X_test)
        rf_accuracy = accuracy_score(y_test, rf_pred)

        # Model 2: Logistic Regression
        lr_model = LogisticRegression(max_iter=1000)
        lr_model.fit(X_train, y_train)
        lr_pred = lr_model.predict(X_test)
        lr_accuracy = accuracy_score(y_test, lr_pred)

        if rf_accuracy > lr_accuracy:
            results.append({'Target': target, 'Model': 'Random Forest', 'Accuracy': rf_accuracy})
        else:
            results.append({'Target': target, 'Model': 'Logistic Regression', 'Accuracy': lr_accuracy})

    return results

def create_dashboard(df, correlation_data, clustering_data, prediction_results):
    app = dash.Dash(__name__)
    
    app.layout = html.Div([
        html.H1('Comprehensive Student Data Analysis'),

        html.Div([
            html.H2('Correlation Analysis'),
            dash_table.DataTable(
                id='correlation_table',
                columns=[{'name': i, 'id': i} for i in correlation_data.columns],
                data=correlation_data.to_dict('records')
            )
        ]),

        html.Div([
            html.H2('Clustering Analysis'),
            html.P(f"Best Clustering Algorithm: {clustering_data['best_model']}"),
            dcc.Graph(
                id='clustering_scatter',
                figure={
                    'data': [
                        {
                            'x': df['PCA1'],
                            'y': df['PCA2'],
                            'mode': 'markers',
                            'marker': {'color': df['Cluster'], 'colorscale': 'Viridis', 'size': 10},
                            'text': df['Cluster'],
                            'type': 'scatter'
                        }
                    ],
                    'layout': {
                        'title': 'Cluster Visualization using PCA',
                        'xaxis': {'title': 'PCA Component 1'},
                        'yaxis': {'title': 'PCA Component 2'}
                    }
                }
            )
        ]),

        html.Div([
            html.H2('Prediction Models'),
            dash_table.DataTable(
                id='prediction_table',
                columns=[{'name': i, 'id': i} for i in prediction_results.columns],
                data=prediction_results.to_dict('records')
            )
        ])
    ])

    app.run_server(debug=True)

def load_csv(file):
    df = pd.read_csv(file.name)
    df = enhanced_preprocessing(df)
    return df

# Main execution
iface = gr.Interface(
    fn=load_csv,
    inputs=gr.File(label="Upload CSV File"),
    outputs=gr.Dataframe(label="Preview of Uploaded Data"),
    description="Upload a CSV file to perform comprehensive student data analysis."
)

iface.launch()

# Note: The data loading is done through Gradio, no need for an additional file parameter.
if __name__ == "__main__":
    pass