Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| import pytube as pt | |
| from transformers import pipeline | |
| MODEL_NAME = "openai/whisper-large-v2" | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=30, | |
| device=device, | |
| ) | |
| all_special_ids = pipe.tokenizer.all_special_ids | |
| transcribe_token_id = all_special_ids[-5] | |
| translate_token_id = all_special_ids[-6] | |
| def transcribe(microphone, file_upload, task): | |
| warn_output = "" | |
| if (microphone is not None) and (file_upload is not None): | |
| warn_output = ( | |
| "WARNING: You've uploaded an audio file and used the microphone. " | |
| "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
| ) | |
| elif (microphone is None) and (file_upload is None): | |
| return "ERROR: You have to either use the microphone or upload an audio file" | |
| file = microphone if microphone is not None else file_upload | |
| pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] | |
| text = pipe(file)["text"] | |
| return warn_output + text | |
| def _return_yt_html_embed(yt_url): | |
| video_id = yt_url.split("?v=")[-1] | |
| HTML_str = ( | |
| f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
| " </center>" | |
| ) | |
| return HTML_str | |
| def yt_transcribe(yt_url, task): | |
| yt = pt.YouTube(yt_url) | |
| html_embed_str = _return_yt_html_embed(yt_url) | |
| stream = yt.streams.filter(only_audio=True)[0] | |
| stream.download(filename="audio.mp3") | |
| pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] | |
| text = pipe("audio.mp3")["text"] | |
| return html_embed_str, text | |
| demo = gr.Blocks() | |
| mf_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
| gr.inputs.Audio(source="upload", type="filepath", optional=True), | |
| gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
| ], | |
| outputs="text", | |
| layout="horizontal", | |
| theme="huggingface", | |
| title="Whisper Large V2: Transcribe Audio", | |
| description=( | |
| "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
| f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" | |
| " of arbitrary length." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| yt_transcribe = gr.Interface( | |
| fn=yt_transcribe, | |
| inputs=[ | |
| gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
| gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe") | |
| ], | |
| outputs=["html", "text"], | |
| layout="horizontal", | |
| theme="huggingface", | |
| title="Whisper Large V2: Transcribe YouTube", | |
| description=( | |
| "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" | |
| f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" | |
| " arbitrary length." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) | |
| demo.launch(enable_queue=True) | |