Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload 28 files
Browse files- app.py +373 -0
- diffusers_helper/__pycache__/bucket_tools.cpython-310.pyc +0 -0
- diffusers_helper/__pycache__/clip_vision.cpython-310.pyc +0 -0
- diffusers_helper/__pycache__/dit_common.cpython-310.pyc +0 -0
- diffusers_helper/__pycache__/hf_login.cpython-310.pyc +0 -0
- diffusers_helper/__pycache__/hunyuan.cpython-310.pyc +0 -0
- diffusers_helper/__pycache__/memory.cpython-310.pyc +0 -0
- diffusers_helper/__pycache__/thread_utils.cpython-310.pyc +0 -0
- diffusers_helper/__pycache__/utils.cpython-310.pyc +0 -0
- diffusers_helper/bucket_tools.py +30 -0
- diffusers_helper/clip_vision.py +12 -0
- diffusers_helper/dit_common.py +53 -0
- diffusers_helper/gradio/__pycache__/progress_bar.cpython-310.pyc +0 -0
- diffusers_helper/gradio/progress_bar.py +86 -0
- diffusers_helper/hf_login.py +21 -0
- diffusers_helper/hunyuan.py +111 -0
- diffusers_helper/k_diffusion/__pycache__/uni_pc_fm.cpython-310.pyc +0 -0
- diffusers_helper/k_diffusion/__pycache__/wrapper.cpython-310.pyc +0 -0
- diffusers_helper/k_diffusion/uni_pc_fm.py +141 -0
- diffusers_helper/k_diffusion/wrapper.py +51 -0
- diffusers_helper/memory.py +134 -0
- diffusers_helper/models/__pycache__/hunyuan_video_packed.cpython-310.pyc +0 -0
- diffusers_helper/models/hunyuan_video_packed.py +1035 -0
- diffusers_helper/pipelines/__pycache__/k_diffusion_hunyuan.cpython-310.pyc +0 -0
- diffusers_helper/pipelines/k_diffusion_hunyuan.py +120 -0
- diffusers_helper/thread_utils.py +76 -0
- diffusers_helper/utils.py +613 -0
- requirements.txt +15 -0
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,373 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from diffusers_helper.hf_login import login
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import gradio as gr
         | 
| 8 | 
            +
            import torch
         | 
| 9 | 
            +
            import traceback
         | 
| 10 | 
            +
            import einops
         | 
| 11 | 
            +
            import safetensors.torch as sf
         | 
| 12 | 
            +
            import numpy as np
         | 
| 13 | 
            +
            import math
         | 
| 14 | 
            +
            import spaces
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            from PIL import Image
         | 
| 17 | 
            +
            from diffusers import AutoencoderKLHunyuanVideo
         | 
| 18 | 
            +
            from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
         | 
| 19 | 
            +
            from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
         | 
| 20 | 
            +
            from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
         | 
| 21 | 
            +
            from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
         | 
| 22 | 
            +
            from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
         | 
| 23 | 
            +
            from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
         | 
| 24 | 
            +
            from diffusers_helper.thread_utils import AsyncStream, async_run
         | 
| 25 | 
            +
            from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
         | 
| 26 | 
            +
            from transformers import SiglipImageProcessor, SiglipVisionModel
         | 
| 27 | 
            +
            from diffusers_helper.clip_vision import hf_clip_vision_encode
         | 
| 28 | 
            +
            from diffusers_helper.bucket_tools import find_nearest_bucket
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            free_mem_gb = get_cuda_free_memory_gb(gpu)
         | 
| 32 | 
            +
            high_vram = free_mem_gb > 60
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            print(f'Free VRAM {free_mem_gb} GB')
         | 
| 35 | 
            +
            print(f'High-VRAM Mode: {high_vram}')
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
         | 
| 38 | 
            +
            text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
         | 
| 39 | 
            +
            tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
         | 
| 40 | 
            +
            tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
         | 
| 41 | 
            +
            vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
         | 
| 44 | 
            +
            image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            vae.eval()
         | 
| 49 | 
            +
            text_encoder.eval()
         | 
| 50 | 
            +
            text_encoder_2.eval()
         | 
| 51 | 
            +
            image_encoder.eval()
         | 
| 52 | 
            +
            transformer.eval()
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            if not high_vram:
         | 
| 55 | 
            +
                vae.enable_slicing()
         | 
| 56 | 
            +
                vae.enable_tiling()
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            transformer.high_quality_fp32_output_for_inference = True
         | 
| 59 | 
            +
            print('transformer.high_quality_fp32_output_for_inference = True')
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            transformer.to(dtype=torch.bfloat16)
         | 
| 62 | 
            +
            vae.to(dtype=torch.float16)
         | 
| 63 | 
            +
            image_encoder.to(dtype=torch.float16)
         | 
| 64 | 
            +
            text_encoder.to(dtype=torch.float16)
         | 
| 65 | 
            +
            text_encoder_2.to(dtype=torch.float16)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            vae.requires_grad_(False)
         | 
| 68 | 
            +
            text_encoder.requires_grad_(False)
         | 
| 69 | 
            +
            text_encoder_2.requires_grad_(False)
         | 
| 70 | 
            +
            image_encoder.requires_grad_(False)
         | 
| 71 | 
            +
            transformer.requires_grad_(False)
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            if not high_vram:
         | 
| 74 | 
            +
                # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
         | 
| 75 | 
            +
                DynamicSwapInstaller.install_model(transformer, device=gpu)
         | 
| 76 | 
            +
                DynamicSwapInstaller.install_model(text_encoder, device=gpu)
         | 
| 77 | 
            +
            else:
         | 
| 78 | 
            +
                text_encoder.to(gpu)
         | 
| 79 | 
            +
                text_encoder_2.to(gpu)
         | 
| 80 | 
            +
                image_encoder.to(gpu)
         | 
| 81 | 
            +
                vae.to(gpu)
         | 
| 82 | 
            +
                transformer.to(gpu)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            stream = AsyncStream()
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            outputs_folder = './outputs/'
         | 
| 87 | 
            +
            os.makedirs(outputs_folder, exist_ok=True)
         | 
| 88 | 
            +
             | 
| 89 | 
            +
             | 
| 90 | 
            +
            @torch.no_grad()
         | 
| 91 | 
            +
            def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
         | 
| 92 | 
            +
                total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
         | 
| 93 | 
            +
                total_latent_sections = int(max(round(total_latent_sections), 1))
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                job_id = generate_timestamp()
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                try:
         | 
| 100 | 
            +
                    # Clean GPU
         | 
| 101 | 
            +
                    if not high_vram:
         | 
| 102 | 
            +
                        unload_complete_models(
         | 
| 103 | 
            +
                            text_encoder, text_encoder_2, image_encoder, vae, transformer
         | 
| 104 | 
            +
                        )
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    # Text encoding
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                    if not high_vram:
         | 
| 111 | 
            +
                        fake_diffusers_current_device(text_encoder, gpu)  # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
         | 
| 112 | 
            +
                        load_model_as_complete(text_encoder_2, target_device=gpu)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                    if cfg == 1:
         | 
| 117 | 
            +
                        llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
         | 
| 118 | 
            +
                    else:
         | 
| 119 | 
            +
                        llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
         | 
| 122 | 
            +
                    llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    # Processing input image
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    H, W, C = input_image.shape
         | 
| 129 | 
            +
                    height, width = find_nearest_bucket(H, W, resolution=640)
         | 
| 130 | 
            +
                    input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
         | 
| 135 | 
            +
                    input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    # VAE encoding
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    if not high_vram:
         | 
| 142 | 
            +
                        load_model_as_complete(vae, target_device=gpu)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    start_latent = vae_encode(input_image_pt, vae)
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    # CLIP Vision
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    if not high_vram:
         | 
| 151 | 
            +
                        load_model_as_complete(image_encoder, target_device=gpu)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
         | 
| 154 | 
            +
                    image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    # Dtype
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    llama_vec = llama_vec.to(transformer.dtype)
         | 
| 159 | 
            +
                    llama_vec_n = llama_vec_n.to(transformer.dtype)
         | 
| 160 | 
            +
                    clip_l_pooler = clip_l_pooler.to(transformer.dtype)
         | 
| 161 | 
            +
                    clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
         | 
| 162 | 
            +
                    image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                    # Sampling
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    rnd = torch.Generator("cpu").manual_seed(seed)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
         | 
| 171 | 
            +
                    history_pixels = None
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
         | 
| 174 | 
            +
                    total_generated_latent_frames = 1
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                    for section_index in range(total_latent_sections):
         | 
| 177 | 
            +
                        if stream.input_queue.top() == 'end':
         | 
| 178 | 
            +
                            stream.output_queue.push(('end', None))
         | 
| 179 | 
            +
                            return
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                        print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                        if not high_vram:
         | 
| 184 | 
            +
                            unload_complete_models()
         | 
| 185 | 
            +
                            move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                        if use_teacache:
         | 
| 188 | 
            +
                            transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
         | 
| 189 | 
            +
                        else:
         | 
| 190 | 
            +
                            transformer.initialize_teacache(enable_teacache=False)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                        def callback(d):
         | 
| 193 | 
            +
                            preview = d['denoised']
         | 
| 194 | 
            +
                            preview = vae_decode_fake(preview)
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                            preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
         | 
| 197 | 
            +
                            preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                            if stream.input_queue.top() == 'end':
         | 
| 200 | 
            +
                                stream.output_queue.push(('end', None))
         | 
| 201 | 
            +
                                raise KeyboardInterrupt('User ends the task.')
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                            current_step = d['i'] + 1
         | 
| 204 | 
            +
                            percentage = int(100.0 * current_step / steps)
         | 
| 205 | 
            +
                            hint = f'Sampling {current_step}/{steps}'
         | 
| 206 | 
            +
                            desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
         | 
| 207 | 
            +
                            stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
         | 
| 208 | 
            +
                            return
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                        indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
         | 
| 211 | 
            +
                        clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
         | 
| 212 | 
            +
                        clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                        clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
         | 
| 215 | 
            +
                        clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                        generated_latents = sample_hunyuan(
         | 
| 218 | 
            +
                            transformer=transformer,
         | 
| 219 | 
            +
                            sampler='unipc',
         | 
| 220 | 
            +
                            width=width,
         | 
| 221 | 
            +
                            height=height,
         | 
| 222 | 
            +
                            frames=latent_window_size * 4 - 3,
         | 
| 223 | 
            +
                            real_guidance_scale=cfg,
         | 
| 224 | 
            +
                            distilled_guidance_scale=gs,
         | 
| 225 | 
            +
                            guidance_rescale=rs,
         | 
| 226 | 
            +
                            # shift=3.0,
         | 
| 227 | 
            +
                            num_inference_steps=steps,
         | 
| 228 | 
            +
                            generator=rnd,
         | 
| 229 | 
            +
                            prompt_embeds=llama_vec,
         | 
| 230 | 
            +
                            prompt_embeds_mask=llama_attention_mask,
         | 
| 231 | 
            +
                            prompt_poolers=clip_l_pooler,
         | 
| 232 | 
            +
                            negative_prompt_embeds=llama_vec_n,
         | 
| 233 | 
            +
                            negative_prompt_embeds_mask=llama_attention_mask_n,
         | 
| 234 | 
            +
                            negative_prompt_poolers=clip_l_pooler_n,
         | 
| 235 | 
            +
                            device=gpu,
         | 
| 236 | 
            +
                            dtype=torch.bfloat16,
         | 
| 237 | 
            +
                            image_embeddings=image_encoder_last_hidden_state,
         | 
| 238 | 
            +
                            latent_indices=latent_indices,
         | 
| 239 | 
            +
                            clean_latents=clean_latents,
         | 
| 240 | 
            +
                            clean_latent_indices=clean_latent_indices,
         | 
| 241 | 
            +
                            clean_latents_2x=clean_latents_2x,
         | 
| 242 | 
            +
                            clean_latent_2x_indices=clean_latent_2x_indices,
         | 
| 243 | 
            +
                            clean_latents_4x=clean_latents_4x,
         | 
| 244 | 
            +
                            clean_latent_4x_indices=clean_latent_4x_indices,
         | 
| 245 | 
            +
                            callback=callback,
         | 
| 246 | 
            +
                        )
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                        total_generated_latent_frames += int(generated_latents.shape[2])
         | 
| 249 | 
            +
                        history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                        if not high_vram:
         | 
| 252 | 
            +
                            offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
         | 
| 253 | 
            +
                            load_model_as_complete(vae, target_device=gpu)
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                        real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                        if history_pixels is None:
         | 
| 258 | 
            +
                            history_pixels = vae_decode(real_history_latents, vae).cpu()
         | 
| 259 | 
            +
                        else:
         | 
| 260 | 
            +
                            section_latent_frames = latent_window_size * 2
         | 
| 261 | 
            +
                            overlapped_frames = latent_window_size * 4 - 3
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                            current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
         | 
| 264 | 
            +
                            history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                        if not high_vram:
         | 
| 267 | 
            +
                            unload_complete_models()
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                        output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                        save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                        print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                        stream.output_queue.push(('file', output_filename))
         | 
| 276 | 
            +
                except:
         | 
| 277 | 
            +
                    traceback.print_exc()
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    if not high_vram:
         | 
| 280 | 
            +
                        unload_complete_models(
         | 
| 281 | 
            +
                            text_encoder, text_encoder_2, image_encoder, vae, transformer
         | 
| 282 | 
            +
                        )
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                stream.output_queue.push(('end', None))
         | 
| 285 | 
            +
                return
         | 
| 286 | 
            +
             | 
| 287 | 
            +
            @spaces.GPU
         | 
| 288 | 
            +
            def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
         | 
| 289 | 
            +
                global stream
         | 
| 290 | 
            +
                assert input_image is not None, 'No input image!'
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                stream = AsyncStream()
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                output_filename = None
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                while True:
         | 
| 301 | 
            +
                    flag, data = stream.output_queue.next()
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                    if flag == 'file':
         | 
| 304 | 
            +
                        output_filename = data
         | 
| 305 | 
            +
                        yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                    if flag == 'progress':
         | 
| 308 | 
            +
                        preview, desc, html = data
         | 
| 309 | 
            +
                        yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    if flag == 'end':
         | 
| 312 | 
            +
                        yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
         | 
| 313 | 
            +
                        break
         | 
| 314 | 
            +
             | 
| 315 | 
            +
             | 
| 316 | 
            +
            def end_process():
         | 
| 317 | 
            +
                stream.input_queue.push('end')
         | 
| 318 | 
            +
             | 
| 319 | 
            +
             | 
| 320 | 
            +
            quick_prompts = [
         | 
| 321 | 
            +
                'The girl dances gracefully, with clear movements, full of charm.',
         | 
| 322 | 
            +
                'A character doing some simple body movements.',
         | 
| 323 | 
            +
            ]
         | 
| 324 | 
            +
            quick_prompts = [[x] for x in quick_prompts]
         | 
| 325 | 
            +
             | 
| 326 | 
            +
             | 
| 327 | 
            +
            css = make_progress_bar_css()
         | 
| 328 | 
            +
            block = gr.Blocks(css=css).queue()
         | 
| 329 | 
            +
            with block:
         | 
| 330 | 
            +
                gr.Markdown('# FramePack-F1')
         | 
| 331 | 
            +
                with gr.Row():
         | 
| 332 | 
            +
                    with gr.Column():
         | 
| 333 | 
            +
                        input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
         | 
| 334 | 
            +
                        prompt = gr.Textbox(label="Prompt", value='')
         | 
| 335 | 
            +
                        example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
         | 
| 336 | 
            +
                        example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                        with gr.Row():
         | 
| 339 | 
            +
                            start_button = gr.Button(value="Start Generation")
         | 
| 340 | 
            +
                            end_button = gr.Button(value="End Generation", interactive=False)
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                        with gr.Group():
         | 
| 343 | 
            +
                            use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                            n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)  # Not used
         | 
| 346 | 
            +
                            seed = gr.Number(label="Seed", value=31337, precision=0)
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                            total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=5, value=2, step=0.1)
         | 
| 349 | 
            +
                            latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False)  # Should not change
         | 
| 350 | 
            +
                            steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                            cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False)  # Should not change
         | 
| 353 | 
            +
                            gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
         | 
| 354 | 
            +
                            rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False)  # Should not change
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                            gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                            mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                    with gr.Column():
         | 
| 361 | 
            +
                        preview_image = gr.Image(label="Next Latents", height=200, visible=False)
         | 
| 362 | 
            +
                        result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
         | 
| 363 | 
            +
                        progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
         | 
| 364 | 
            +
                        progress_bar = gr.HTML('', elem_classes='no-generating-animation')
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                gr.HTML('<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>')
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf]
         | 
| 369 | 
            +
                start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
         | 
| 370 | 
            +
                end_button.click(fn=end_process)
         | 
| 371 | 
            +
             | 
| 372 | 
            +
             | 
| 373 | 
            +
            block.launch(share=True)
         | 
    	
        diffusers_helper/__pycache__/bucket_tools.cpython-310.pyc
    ADDED
    
    | Binary file (646 Bytes). View file | 
|  | 
    	
        diffusers_helper/__pycache__/clip_vision.cpython-310.pyc
    ADDED
    
    | Binary file (601 Bytes). View file | 
|  | 
    	
        diffusers_helper/__pycache__/dit_common.cpython-310.pyc
    ADDED
    
    | Binary file (1.7 kB). View file | 
|  | 
    	
        diffusers_helper/__pycache__/hf_login.cpython-310.pyc
    ADDED
    
    | Binary file (598 Bytes). View file | 
|  | 
    	
        diffusers_helper/__pycache__/hunyuan.cpython-310.pyc
    ADDED
    
    | Binary file (3.35 kB). View file | 
|  | 
    	
        diffusers_helper/__pycache__/memory.cpython-310.pyc
    ADDED
    
    | Binary file (4.11 kB). View file | 
|  | 
    	
        diffusers_helper/__pycache__/thread_utils.cpython-310.pyc
    ADDED
    
    | Binary file (2.76 kB). View file | 
|  | 
    	
        diffusers_helper/__pycache__/utils.cpython-310.pyc
    ADDED
    
    | Binary file (18 kB). View file | 
|  | 
    	
        diffusers_helper/bucket_tools.py
    ADDED
    
    | @@ -0,0 +1,30 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            bucket_options = {
         | 
| 2 | 
            +
                640: [
         | 
| 3 | 
            +
                    (416, 960),
         | 
| 4 | 
            +
                    (448, 864),
         | 
| 5 | 
            +
                    (480, 832),
         | 
| 6 | 
            +
                    (512, 768),
         | 
| 7 | 
            +
                    (544, 704),
         | 
| 8 | 
            +
                    (576, 672),
         | 
| 9 | 
            +
                    (608, 640),
         | 
| 10 | 
            +
                    (640, 608),
         | 
| 11 | 
            +
                    (672, 576),
         | 
| 12 | 
            +
                    (704, 544),
         | 
| 13 | 
            +
                    (768, 512),
         | 
| 14 | 
            +
                    (832, 480),
         | 
| 15 | 
            +
                    (864, 448),
         | 
| 16 | 
            +
                    (960, 416),
         | 
| 17 | 
            +
                ],
         | 
| 18 | 
            +
            }
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            def find_nearest_bucket(h, w, resolution=640):
         | 
| 22 | 
            +
                min_metric = float('inf')
         | 
| 23 | 
            +
                best_bucket = None
         | 
| 24 | 
            +
                for (bucket_h, bucket_w) in bucket_options[resolution]:
         | 
| 25 | 
            +
                    metric = abs(h * bucket_w - w * bucket_h)
         | 
| 26 | 
            +
                    if metric <= min_metric:
         | 
| 27 | 
            +
                        min_metric = metric
         | 
| 28 | 
            +
                        best_bucket = (bucket_h, bucket_w)
         | 
| 29 | 
            +
                return best_bucket
         | 
| 30 | 
            +
             | 
    	
        diffusers_helper/clip_vision.py
    ADDED
    
    | @@ -0,0 +1,12 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import numpy as np
         | 
| 2 | 
            +
             | 
| 3 | 
            +
             | 
| 4 | 
            +
            def hf_clip_vision_encode(image, feature_extractor, image_encoder):
         | 
| 5 | 
            +
                assert isinstance(image, np.ndarray)
         | 
| 6 | 
            +
                assert image.ndim == 3 and image.shape[2] == 3
         | 
| 7 | 
            +
                assert image.dtype == np.uint8
         | 
| 8 | 
            +
             | 
| 9 | 
            +
                preprocessed = feature_extractor.preprocess(images=image, return_tensors="pt").to(device=image_encoder.device, dtype=image_encoder.dtype)
         | 
| 10 | 
            +
                image_encoder_output = image_encoder(**preprocessed)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                return image_encoder_output
         | 
    	
        diffusers_helper/dit_common.py
    ADDED
    
    | @@ -0,0 +1,53 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import accelerate.accelerator
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            from diffusers.models.normalization import RMSNorm, LayerNorm, FP32LayerNorm, AdaLayerNormContinuous
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            accelerate.accelerator.convert_outputs_to_fp32 = lambda x: x
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            def LayerNorm_forward(self, x):
         | 
| 11 | 
            +
                return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x)
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            LayerNorm.forward = LayerNorm_forward
         | 
| 15 | 
            +
            torch.nn.LayerNorm.forward = LayerNorm_forward
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            def FP32LayerNorm_forward(self, x):
         | 
| 19 | 
            +
                origin_dtype = x.dtype
         | 
| 20 | 
            +
                return torch.nn.functional.layer_norm(
         | 
| 21 | 
            +
                    x.float(),
         | 
| 22 | 
            +
                    self.normalized_shape,
         | 
| 23 | 
            +
                    self.weight.float() if self.weight is not None else None,
         | 
| 24 | 
            +
                    self.bias.float() if self.bias is not None else None,
         | 
| 25 | 
            +
                    self.eps,
         | 
| 26 | 
            +
                ).to(origin_dtype)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            FP32LayerNorm.forward = FP32LayerNorm_forward
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            def RMSNorm_forward(self, hidden_states):
         | 
| 33 | 
            +
                input_dtype = hidden_states.dtype
         | 
| 34 | 
            +
                variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
         | 
| 35 | 
            +
                hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                if self.weight is None:
         | 
| 38 | 
            +
                    return hidden_states.to(input_dtype)
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                return hidden_states.to(input_dtype) * self.weight.to(input_dtype)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            RMSNorm.forward = RMSNorm_forward
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
            def AdaLayerNormContinuous_forward(self, x, conditioning_embedding):
         | 
| 47 | 
            +
                emb = self.linear(self.silu(conditioning_embedding))
         | 
| 48 | 
            +
                scale, shift = emb.chunk(2, dim=1)
         | 
| 49 | 
            +
                x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
         | 
| 50 | 
            +
                return x
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            AdaLayerNormContinuous.forward = AdaLayerNormContinuous_forward
         | 
    	
        diffusers_helper/gradio/__pycache__/progress_bar.cpython-310.pyc
    ADDED
    
    | Binary file (2.45 kB). View file | 
|  | 
    	
        diffusers_helper/gradio/progress_bar.py
    ADDED
    
    | @@ -0,0 +1,86 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            progress_html = '''
         | 
| 2 | 
            +
            <div class="loader-container">
         | 
| 3 | 
            +
              <div class="loader"></div>
         | 
| 4 | 
            +
              <div class="progress-container">
         | 
| 5 | 
            +
                <progress value="*number*" max="100"></progress>
         | 
| 6 | 
            +
              </div>
         | 
| 7 | 
            +
              <span>*text*</span>
         | 
| 8 | 
            +
            </div>
         | 
| 9 | 
            +
            '''
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            css = '''
         | 
| 12 | 
            +
            .loader-container {
         | 
| 13 | 
            +
              display: flex; /* Use flex to align items horizontally */
         | 
| 14 | 
            +
              align-items: center; /* Center items vertically within the container */
         | 
| 15 | 
            +
              white-space: nowrap; /* Prevent line breaks within the container */
         | 
| 16 | 
            +
            }
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            .loader {
         | 
| 19 | 
            +
              border: 8px solid #f3f3f3; /* Light grey */
         | 
| 20 | 
            +
              border-top: 8px solid #3498db; /* Blue */
         | 
| 21 | 
            +
              border-radius: 50%;
         | 
| 22 | 
            +
              width: 30px;
         | 
| 23 | 
            +
              height: 30px;
         | 
| 24 | 
            +
              animation: spin 2s linear infinite;
         | 
| 25 | 
            +
            }
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            @keyframes spin {
         | 
| 28 | 
            +
              0% { transform: rotate(0deg); }
         | 
| 29 | 
            +
              100% { transform: rotate(360deg); }
         | 
| 30 | 
            +
            }
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            /* Style the progress bar */
         | 
| 33 | 
            +
            progress {
         | 
| 34 | 
            +
              appearance: none; /* Remove default styling */
         | 
| 35 | 
            +
              height: 20px; /* Set the height of the progress bar */
         | 
| 36 | 
            +
              border-radius: 5px; /* Round the corners of the progress bar */
         | 
| 37 | 
            +
              background-color: #f3f3f3; /* Light grey background */
         | 
| 38 | 
            +
              width: 100%;
         | 
| 39 | 
            +
              vertical-align: middle !important;
         | 
| 40 | 
            +
            }
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            /* Style the progress bar container */
         | 
| 43 | 
            +
            .progress-container {
         | 
| 44 | 
            +
              margin-left: 20px;
         | 
| 45 | 
            +
              margin-right: 20px;
         | 
| 46 | 
            +
              flex-grow: 1; /* Allow the progress container to take up remaining space */
         | 
| 47 | 
            +
            }
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            /* Set the color of the progress bar fill */
         | 
| 50 | 
            +
            progress::-webkit-progress-value {
         | 
| 51 | 
            +
              background-color: #3498db; /* Blue color for the fill */
         | 
| 52 | 
            +
            }
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            progress::-moz-progress-bar {
         | 
| 55 | 
            +
              background-color: #3498db; /* Blue color for the fill in Firefox */
         | 
| 56 | 
            +
            }
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            /* Style the text on the progress bar */
         | 
| 59 | 
            +
            progress::after {
         | 
| 60 | 
            +
              content: attr(value '%'); /* Display the progress value followed by '%' */
         | 
| 61 | 
            +
              position: absolute;
         | 
| 62 | 
            +
              top: 50%;
         | 
| 63 | 
            +
              left: 50%;
         | 
| 64 | 
            +
              transform: translate(-50%, -50%);
         | 
| 65 | 
            +
              color: white; /* Set text color */
         | 
| 66 | 
            +
              font-size: 14px; /* Set font size */
         | 
| 67 | 
            +
            }
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            /* Style other texts */
         | 
| 70 | 
            +
            .loader-container > span {
         | 
| 71 | 
            +
              margin-left: 5px; /* Add spacing between the progress bar and the text */
         | 
| 72 | 
            +
            }
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            .no-generating-animation > .generating {
         | 
| 75 | 
            +
              display: none !important;
         | 
| 76 | 
            +
            }
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            '''
         | 
| 79 | 
            +
             | 
| 80 | 
            +
             | 
| 81 | 
            +
            def make_progress_bar_html(number, text):
         | 
| 82 | 
            +
                return progress_html.replace('*number*', str(number)).replace('*text*', text)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
             | 
| 85 | 
            +
            def make_progress_bar_css():
         | 
| 86 | 
            +
                return css
         | 
    	
        diffusers_helper/hf_login.py
    ADDED
    
    | @@ -0,0 +1,21 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
             | 
| 3 | 
            +
             | 
| 4 | 
            +
            def login(token):
         | 
| 5 | 
            +
                from huggingface_hub import login
         | 
| 6 | 
            +
                import time
         | 
| 7 | 
            +
             | 
| 8 | 
            +
                while True:
         | 
| 9 | 
            +
                    try:
         | 
| 10 | 
            +
                        login(token)
         | 
| 11 | 
            +
                        print('HF login ok.')
         | 
| 12 | 
            +
                        break
         | 
| 13 | 
            +
                    except Exception as e:
         | 
| 14 | 
            +
                        print(f'HF login failed: {e}. Retrying')
         | 
| 15 | 
            +
                        time.sleep(0.5)
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            hf_token = os.environ.get('HF_TOKEN', None)
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            if hf_token is not None:
         | 
| 21 | 
            +
                login(hf_token)
         | 
    	
        diffusers_helper/hunyuan.py
    ADDED
    
    | @@ -0,0 +1,111 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
         | 
| 4 | 
            +
            from diffusers_helper.utils import crop_or_pad_yield_mask
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            @torch.no_grad()
         | 
| 8 | 
            +
            def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
         | 
| 9 | 
            +
                assert isinstance(prompt, str)
         | 
| 10 | 
            +
             | 
| 11 | 
            +
                prompt = [prompt]
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                # LLAMA
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
         | 
| 16 | 
            +
                crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                llama_inputs = tokenizer(
         | 
| 19 | 
            +
                    prompt_llama,
         | 
| 20 | 
            +
                    padding="max_length",
         | 
| 21 | 
            +
                    max_length=max_length + crop_start,
         | 
| 22 | 
            +
                    truncation=True,
         | 
| 23 | 
            +
                    return_tensors="pt",
         | 
| 24 | 
            +
                    return_length=False,
         | 
| 25 | 
            +
                    return_overflowing_tokens=False,
         | 
| 26 | 
            +
                    return_attention_mask=True,
         | 
| 27 | 
            +
                )
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
         | 
| 30 | 
            +
                llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
         | 
| 31 | 
            +
                llama_attention_length = int(llama_attention_mask.sum())
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                llama_outputs = text_encoder(
         | 
| 34 | 
            +
                    input_ids=llama_input_ids,
         | 
| 35 | 
            +
                    attention_mask=llama_attention_mask,
         | 
| 36 | 
            +
                    output_hidden_states=True,
         | 
| 37 | 
            +
                )
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
         | 
| 40 | 
            +
                # llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
         | 
| 41 | 
            +
                llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                assert torch.all(llama_attention_mask.bool())
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                # CLIP
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                clip_l_input_ids = tokenizer_2(
         | 
| 48 | 
            +
                    prompt,
         | 
| 49 | 
            +
                    padding="max_length",
         | 
| 50 | 
            +
                    max_length=77,
         | 
| 51 | 
            +
                    truncation=True,
         | 
| 52 | 
            +
                    return_overflowing_tokens=False,
         | 
| 53 | 
            +
                    return_length=False,
         | 
| 54 | 
            +
                    return_tensors="pt",
         | 
| 55 | 
            +
                ).input_ids
         | 
| 56 | 
            +
                clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                return llama_vec, clip_l_pooler
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            @torch.no_grad()
         | 
| 62 | 
            +
            def vae_decode_fake(latents):
         | 
| 63 | 
            +
                latent_rgb_factors = [
         | 
| 64 | 
            +
                    [-0.0395, -0.0331, 0.0445],
         | 
| 65 | 
            +
                    [0.0696, 0.0795, 0.0518],
         | 
| 66 | 
            +
                    [0.0135, -0.0945, -0.0282],
         | 
| 67 | 
            +
                    [0.0108, -0.0250, -0.0765],
         | 
| 68 | 
            +
                    [-0.0209, 0.0032, 0.0224],
         | 
| 69 | 
            +
                    [-0.0804, -0.0254, -0.0639],
         | 
| 70 | 
            +
                    [-0.0991, 0.0271, -0.0669],
         | 
| 71 | 
            +
                    [-0.0646, -0.0422, -0.0400],
         | 
| 72 | 
            +
                    [-0.0696, -0.0595, -0.0894],
         | 
| 73 | 
            +
                    [-0.0799, -0.0208, -0.0375],
         | 
| 74 | 
            +
                    [0.1166, 0.1627, 0.0962],
         | 
| 75 | 
            +
                    [0.1165, 0.0432, 0.0407],
         | 
| 76 | 
            +
                    [-0.2315, -0.1920, -0.1355],
         | 
| 77 | 
            +
                    [-0.0270, 0.0401, -0.0821],
         | 
| 78 | 
            +
                    [-0.0616, -0.0997, -0.0727],
         | 
| 79 | 
            +
                    [0.0249, -0.0469, -0.1703]
         | 
| 80 | 
            +
                ]  # From comfyui
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
         | 
| 85 | 
            +
                bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
         | 
| 88 | 
            +
                images = images.clamp(0.0, 1.0)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                return images
         | 
| 91 | 
            +
             | 
| 92 | 
            +
             | 
| 93 | 
            +
            @torch.no_grad()
         | 
| 94 | 
            +
            def vae_decode(latents, vae, image_mode=False):
         | 
| 95 | 
            +
                latents = latents / vae.config.scaling_factor
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                if not image_mode:
         | 
| 98 | 
            +
                    image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
         | 
| 99 | 
            +
                else:
         | 
| 100 | 
            +
                    latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
         | 
| 101 | 
            +
                    image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
         | 
| 102 | 
            +
                    image = torch.cat(image, dim=2)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                return image
         | 
| 105 | 
            +
             | 
| 106 | 
            +
             | 
| 107 | 
            +
            @torch.no_grad()
         | 
| 108 | 
            +
            def vae_encode(image, vae):
         | 
| 109 | 
            +
                latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
         | 
| 110 | 
            +
                latents = latents * vae.config.scaling_factor
         | 
| 111 | 
            +
                return latents
         | 
    	
        diffusers_helper/k_diffusion/__pycache__/uni_pc_fm.cpython-310.pyc
    ADDED
    
    | Binary file (3.22 kB). View file | 
|  | 
    	
        diffusers_helper/k_diffusion/__pycache__/wrapper.cpython-310.pyc
    ADDED
    
    | Binary file (1.59 kB). View file | 
|  | 
    	
        diffusers_helper/k_diffusion/uni_pc_fm.py
    ADDED
    
    | @@ -0,0 +1,141 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Better Flow Matching UniPC by Lvmin Zhang
         | 
| 2 | 
            +
            # (c) 2025
         | 
| 3 | 
            +
            # CC BY-SA 4.0
         | 
| 4 | 
            +
            # Attribution-ShareAlike 4.0 International Licence
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            import torch
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from tqdm.auto import trange
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            def expand_dims(v, dims):
         | 
| 13 | 
            +
                return v[(...,) + (None,) * (dims - 1)]
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            class FlowMatchUniPC:
         | 
| 17 | 
            +
                def __init__(self, model, extra_args, variant='bh1'):
         | 
| 18 | 
            +
                    self.model = model
         | 
| 19 | 
            +
                    self.variant = variant
         | 
| 20 | 
            +
                    self.extra_args = extra_args
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                def model_fn(self, x, t):
         | 
| 23 | 
            +
                    return self.model(x, t, **self.extra_args)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                def update_fn(self, x, model_prev_list, t_prev_list, t, order):
         | 
| 26 | 
            +
                    assert order <= len(model_prev_list)
         | 
| 27 | 
            +
                    dims = x.dim()
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                    t_prev_0 = t_prev_list[-1]
         | 
| 30 | 
            +
                    lambda_prev_0 = - torch.log(t_prev_0)
         | 
| 31 | 
            +
                    lambda_t = - torch.log(t)
         | 
| 32 | 
            +
                    model_prev_0 = model_prev_list[-1]
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    h = lambda_t - lambda_prev_0
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                    rks = []
         | 
| 37 | 
            +
                    D1s = []
         | 
| 38 | 
            +
                    for i in range(1, order):
         | 
| 39 | 
            +
                        t_prev_i = t_prev_list[-(i + 1)]
         | 
| 40 | 
            +
                        model_prev_i = model_prev_list[-(i + 1)]
         | 
| 41 | 
            +
                        lambda_prev_i = - torch.log(t_prev_i)
         | 
| 42 | 
            +
                        rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
         | 
| 43 | 
            +
                        rks.append(rk)
         | 
| 44 | 
            +
                        D1s.append((model_prev_i - model_prev_0) / rk)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                    rks.append(1.)
         | 
| 47 | 
            +
                    rks = torch.tensor(rks, device=x.device)
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                    R = []
         | 
| 50 | 
            +
                    b = []
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                    hh = -h[0]
         | 
| 53 | 
            +
                    h_phi_1 = torch.expm1(hh)
         | 
| 54 | 
            +
                    h_phi_k = h_phi_1 / hh - 1
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                    factorial_i = 1
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                    if self.variant == 'bh1':
         | 
| 59 | 
            +
                        B_h = hh
         | 
| 60 | 
            +
                    elif self.variant == 'bh2':
         | 
| 61 | 
            +
                        B_h = torch.expm1(hh)
         | 
| 62 | 
            +
                    else:
         | 
| 63 | 
            +
                        raise NotImplementedError('Bad variant!')
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                    for i in range(1, order + 1):
         | 
| 66 | 
            +
                        R.append(torch.pow(rks, i - 1))
         | 
| 67 | 
            +
                        b.append(h_phi_k * factorial_i / B_h)
         | 
| 68 | 
            +
                        factorial_i *= (i + 1)
         | 
| 69 | 
            +
                        h_phi_k = h_phi_k / hh - 1 / factorial_i
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    R = torch.stack(R)
         | 
| 72 | 
            +
                    b = torch.tensor(b, device=x.device)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    use_predictor = len(D1s) > 0
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    if use_predictor:
         | 
| 77 | 
            +
                        D1s = torch.stack(D1s, dim=1)
         | 
| 78 | 
            +
                        if order == 2:
         | 
| 79 | 
            +
                            rhos_p = torch.tensor([0.5], device=b.device)
         | 
| 80 | 
            +
                        else:
         | 
| 81 | 
            +
                            rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
         | 
| 82 | 
            +
                    else:
         | 
| 83 | 
            +
                        D1s = None
         | 
| 84 | 
            +
                        rhos_p = None
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    if order == 1:
         | 
| 87 | 
            +
                        rhos_c = torch.tensor([0.5], device=b.device)
         | 
| 88 | 
            +
                    else:
         | 
| 89 | 
            +
                        rhos_c = torch.linalg.solve(R, b)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    x_t_ = expand_dims(t / t_prev_0, dims) * x - expand_dims(h_phi_1, dims) * model_prev_0
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    if use_predictor:
         | 
| 94 | 
            +
                        pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0]))
         | 
| 95 | 
            +
                    else:
         | 
| 96 | 
            +
                        pred_res = 0
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                    x_t = x_t_ - expand_dims(B_h, dims) * pred_res
         | 
| 99 | 
            +
                    model_t = self.model_fn(x_t, t)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    if D1s is not None:
         | 
| 102 | 
            +
                        corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0]))
         | 
| 103 | 
            +
                    else:
         | 
| 104 | 
            +
                        corr_res = 0
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    D1_t = (model_t - model_prev_0)
         | 
| 107 | 
            +
                    x_t = x_t_ - expand_dims(B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                    return x_t, model_t
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                def sample(self, x, sigmas, callback=None, disable_pbar=False):
         | 
| 112 | 
            +
                    order = min(3, len(sigmas) - 2)
         | 
| 113 | 
            +
                    model_prev_list, t_prev_list = [], []
         | 
| 114 | 
            +
                    for i in trange(len(sigmas) - 1, disable=disable_pbar):
         | 
| 115 | 
            +
                        vec_t = sigmas[i].expand(x.shape[0])
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                        if i == 0:
         | 
| 118 | 
            +
                            model_prev_list = [self.model_fn(x, vec_t)]
         | 
| 119 | 
            +
                            t_prev_list = [vec_t]
         | 
| 120 | 
            +
                        elif i < order:
         | 
| 121 | 
            +
                            init_order = i
         | 
| 122 | 
            +
                            x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, init_order)
         | 
| 123 | 
            +
                            model_prev_list.append(model_x)
         | 
| 124 | 
            +
                            t_prev_list.append(vec_t)
         | 
| 125 | 
            +
                        else:
         | 
| 126 | 
            +
                            x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, order)
         | 
| 127 | 
            +
                            model_prev_list.append(model_x)
         | 
| 128 | 
            +
                            t_prev_list.append(vec_t)
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                        model_prev_list = model_prev_list[-order:]
         | 
| 131 | 
            +
                        t_prev_list = t_prev_list[-order:]
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                        if callback is not None:
         | 
| 134 | 
            +
                            callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]})
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    return model_prev_list[-1]
         | 
| 137 | 
            +
             | 
| 138 | 
            +
             | 
| 139 | 
            +
            def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
         | 
| 140 | 
            +
                assert variant in ['bh1', 'bh2']
         | 
| 141 | 
            +
                return FlowMatchUniPC(model, extra_args=extra_args, variant=variant).sample(noise, sigmas=sigmas, callback=callback, disable_pbar=disable)
         | 
    	
        diffusers_helper/k_diffusion/wrapper.py
    ADDED
    
    | @@ -0,0 +1,51 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
             | 
| 3 | 
            +
             | 
| 4 | 
            +
            def append_dims(x, target_dims):
         | 
| 5 | 
            +
                return x[(...,) + (None,) * (target_dims - x.ndim)]
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=1.0):
         | 
| 9 | 
            +
                if guidance_rescale == 0:
         | 
| 10 | 
            +
                    return noise_cfg
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
         | 
| 13 | 
            +
                std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
         | 
| 14 | 
            +
                noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
         | 
| 15 | 
            +
                noise_cfg = guidance_rescale * noise_pred_rescaled + (1.0 - guidance_rescale) * noise_cfg
         | 
| 16 | 
            +
                return noise_cfg
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            def fm_wrapper(transformer, t_scale=1000.0):
         | 
| 20 | 
            +
                def k_model(x, sigma, **extra_args):
         | 
| 21 | 
            +
                    dtype = extra_args['dtype']
         | 
| 22 | 
            +
                    cfg_scale = extra_args['cfg_scale']
         | 
| 23 | 
            +
                    cfg_rescale = extra_args['cfg_rescale']
         | 
| 24 | 
            +
                    concat_latent = extra_args['concat_latent']
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                    original_dtype = x.dtype
         | 
| 27 | 
            +
                    sigma = sigma.float()
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                    x = x.to(dtype)
         | 
| 30 | 
            +
                    timestep = (sigma * t_scale).to(dtype)
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                    if concat_latent is None:
         | 
| 33 | 
            +
                        hidden_states = x
         | 
| 34 | 
            +
                    else:
         | 
| 35 | 
            +
                        hidden_states = torch.cat([x, concat_latent.to(x)], dim=1)
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                    pred_positive = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['positive'])[0].float()
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                    if cfg_scale == 1.0:
         | 
| 40 | 
            +
                        pred_negative = torch.zeros_like(pred_positive)
         | 
| 41 | 
            +
                    else:
         | 
| 42 | 
            +
                        pred_negative = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['negative'])[0].float()
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                    pred_cfg = pred_negative + cfg_scale * (pred_positive - pred_negative)
         | 
| 45 | 
            +
                    pred = rescale_noise_cfg(pred_cfg, pred_positive, guidance_rescale=cfg_rescale)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                    x0 = x.float() - pred.float() * append_dims(sigma, x.ndim)
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                    return x0.to(dtype=original_dtype)
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                return k_model
         | 
    	
        diffusers_helper/memory.py
    ADDED
    
    | @@ -0,0 +1,134 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # By lllyasviel
         | 
| 2 | 
            +
             | 
| 3 | 
            +
             | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            cpu = torch.device('cpu')
         | 
| 8 | 
            +
            gpu = torch.device(f'cuda:{torch.cuda.current_device()}')
         | 
| 9 | 
            +
            gpu_complete_modules = []
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            class DynamicSwapInstaller:
         | 
| 13 | 
            +
                @staticmethod
         | 
| 14 | 
            +
                def _install_module(module: torch.nn.Module, **kwargs):
         | 
| 15 | 
            +
                    original_class = module.__class__
         | 
| 16 | 
            +
                    module.__dict__['forge_backup_original_class'] = original_class
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                    def hacked_get_attr(self, name: str):
         | 
| 19 | 
            +
                        if '_parameters' in self.__dict__:
         | 
| 20 | 
            +
                            _parameters = self.__dict__['_parameters']
         | 
| 21 | 
            +
                            if name in _parameters:
         | 
| 22 | 
            +
                                p = _parameters[name]
         | 
| 23 | 
            +
                                if p is None:
         | 
| 24 | 
            +
                                    return None
         | 
| 25 | 
            +
                                if p.__class__ == torch.nn.Parameter:
         | 
| 26 | 
            +
                                    return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad)
         | 
| 27 | 
            +
                                else:
         | 
| 28 | 
            +
                                    return p.to(**kwargs)
         | 
| 29 | 
            +
                        if '_buffers' in self.__dict__:
         | 
| 30 | 
            +
                            _buffers = self.__dict__['_buffers']
         | 
| 31 | 
            +
                            if name in _buffers:
         | 
| 32 | 
            +
                                return _buffers[name].to(**kwargs)
         | 
| 33 | 
            +
                        return super(original_class, self).__getattr__(name)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                    module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
         | 
| 36 | 
            +
                        '__getattr__': hacked_get_attr,
         | 
| 37 | 
            +
                    })
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                    return
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                @staticmethod
         | 
| 42 | 
            +
                def _uninstall_module(module: torch.nn.Module):
         | 
| 43 | 
            +
                    if 'forge_backup_original_class' in module.__dict__:
         | 
| 44 | 
            +
                        module.__class__ = module.__dict__.pop('forge_backup_original_class')
         | 
| 45 | 
            +
                    return
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                @staticmethod
         | 
| 48 | 
            +
                def install_model(model: torch.nn.Module, **kwargs):
         | 
| 49 | 
            +
                    for m in model.modules():
         | 
| 50 | 
            +
                        DynamicSwapInstaller._install_module(m, **kwargs)
         | 
| 51 | 
            +
                    return
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                @staticmethod
         | 
| 54 | 
            +
                def uninstall_model(model: torch.nn.Module):
         | 
| 55 | 
            +
                    for m in model.modules():
         | 
| 56 | 
            +
                        DynamicSwapInstaller._uninstall_module(m)
         | 
| 57 | 
            +
                    return
         | 
| 58 | 
            +
             | 
| 59 | 
            +
             | 
| 60 | 
            +
            def fake_diffusers_current_device(model: torch.nn.Module, target_device: torch.device):
         | 
| 61 | 
            +
                if hasattr(model, 'scale_shift_table'):
         | 
| 62 | 
            +
                    model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
         | 
| 63 | 
            +
                    return
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                for k, p in model.named_modules():
         | 
| 66 | 
            +
                    if hasattr(p, 'weight'):
         | 
| 67 | 
            +
                        p.to(target_device)
         | 
| 68 | 
            +
                        return
         | 
| 69 | 
            +
             | 
| 70 | 
            +
             | 
| 71 | 
            +
            def get_cuda_free_memory_gb(device=None):
         | 
| 72 | 
            +
                if device is None:
         | 
| 73 | 
            +
                    device = gpu
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                memory_stats = torch.cuda.memory_stats(device)
         | 
| 76 | 
            +
                bytes_active = memory_stats['active_bytes.all.current']
         | 
| 77 | 
            +
                bytes_reserved = memory_stats['reserved_bytes.all.current']
         | 
| 78 | 
            +
                bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
         | 
| 79 | 
            +
                bytes_inactive_reserved = bytes_reserved - bytes_active
         | 
| 80 | 
            +
                bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
         | 
| 81 | 
            +
                return bytes_total_available / (1024 ** 3)
         | 
| 82 | 
            +
             | 
| 83 | 
            +
             | 
| 84 | 
            +
            def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
         | 
| 85 | 
            +
                print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                for m in model.modules():
         | 
| 88 | 
            +
                    if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
         | 
| 89 | 
            +
                        torch.cuda.empty_cache()
         | 
| 90 | 
            +
                        return
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                    if hasattr(m, 'weight'):
         | 
| 93 | 
            +
                        m.to(device=target_device)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                model.to(device=target_device)
         | 
| 96 | 
            +
                torch.cuda.empty_cache()
         | 
| 97 | 
            +
                return
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
         | 
| 101 | 
            +
                print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                for m in model.modules():
         | 
| 104 | 
            +
                    if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
         | 
| 105 | 
            +
                        torch.cuda.empty_cache()
         | 
| 106 | 
            +
                        return
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    if hasattr(m, 'weight'):
         | 
| 109 | 
            +
                        m.to(device=cpu)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                model.to(device=cpu)
         | 
| 112 | 
            +
                torch.cuda.empty_cache()
         | 
| 113 | 
            +
                return
         | 
| 114 | 
            +
             | 
| 115 | 
            +
             | 
| 116 | 
            +
            def unload_complete_models(*args):
         | 
| 117 | 
            +
                for m in gpu_complete_modules + list(args):
         | 
| 118 | 
            +
                    m.to(device=cpu)
         | 
| 119 | 
            +
                    print(f'Unloaded {m.__class__.__name__} as complete.')
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                gpu_complete_modules.clear()
         | 
| 122 | 
            +
                torch.cuda.empty_cache()
         | 
| 123 | 
            +
                return
         | 
| 124 | 
            +
             | 
| 125 | 
            +
             | 
| 126 | 
            +
            def load_model_as_complete(model, target_device, unload=True):
         | 
| 127 | 
            +
                if unload:
         | 
| 128 | 
            +
                    unload_complete_models()
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                model.to(device=target_device)
         | 
| 131 | 
            +
                print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                gpu_complete_modules.append(model)
         | 
| 134 | 
            +
                return
         | 
    	
        diffusers_helper/models/__pycache__/hunyuan_video_packed.cpython-310.pyc
    ADDED
    
    | Binary file (29.2 kB). View file | 
|  | 
    	
        diffusers_helper/models/hunyuan_video_packed.py
    ADDED
    
    | @@ -0,0 +1,1035 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import einops
         | 
| 5 | 
            +
            import torch.nn as nn
         | 
| 6 | 
            +
            import numpy as np
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            from diffusers.loaders import FromOriginalModelMixin
         | 
| 9 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 10 | 
            +
            from diffusers.loaders import PeftAdapterMixin
         | 
| 11 | 
            +
            from diffusers.utils import logging
         | 
| 12 | 
            +
            from diffusers.models.attention import FeedForward
         | 
| 13 | 
            +
            from diffusers.models.attention_processor import Attention
         | 
| 14 | 
            +
            from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
         | 
| 15 | 
            +
            from diffusers.models.modeling_outputs import Transformer2DModelOutput
         | 
| 16 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 17 | 
            +
            from diffusers_helper.dit_common import LayerNorm
         | 
| 18 | 
            +
            from diffusers_helper.utils import zero_module
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            enabled_backends = []
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            if torch.backends.cuda.flash_sdp_enabled():
         | 
| 24 | 
            +
                enabled_backends.append("flash")
         | 
| 25 | 
            +
            if torch.backends.cuda.math_sdp_enabled():
         | 
| 26 | 
            +
                enabled_backends.append("math")
         | 
| 27 | 
            +
            if torch.backends.cuda.mem_efficient_sdp_enabled():
         | 
| 28 | 
            +
                enabled_backends.append("mem_efficient")
         | 
| 29 | 
            +
            if torch.backends.cuda.cudnn_sdp_enabled():
         | 
| 30 | 
            +
                enabled_backends.append("cudnn")
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            print("Currently enabled native sdp backends:", enabled_backends)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            try:
         | 
| 35 | 
            +
                # raise NotImplementedError
         | 
| 36 | 
            +
                from xformers.ops import memory_efficient_attention as xformers_attn_func
         | 
| 37 | 
            +
                print('Xformers is installed!')
         | 
| 38 | 
            +
            except:
         | 
| 39 | 
            +
                print('Xformers is not installed!')
         | 
| 40 | 
            +
                xformers_attn_func = None
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            try:
         | 
| 43 | 
            +
                # raise NotImplementedError
         | 
| 44 | 
            +
                from flash_attn import flash_attn_varlen_func, flash_attn_func
         | 
| 45 | 
            +
                print('Flash Attn is installed!')
         | 
| 46 | 
            +
            except:
         | 
| 47 | 
            +
                print('Flash Attn is not installed!')
         | 
| 48 | 
            +
                flash_attn_varlen_func = None
         | 
| 49 | 
            +
                flash_attn_func = None
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            try:
         | 
| 52 | 
            +
                # raise NotImplementedError
         | 
| 53 | 
            +
                from sageattention import sageattn_varlen, sageattn
         | 
| 54 | 
            +
                print('Sage Attn is installed!')
         | 
| 55 | 
            +
            except:
         | 
| 56 | 
            +
                print('Sage Attn is not installed!')
         | 
| 57 | 
            +
                sageattn_varlen = None
         | 
| 58 | 
            +
                sageattn = None
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
            def pad_for_3d_conv(x, kernel_size):
         | 
| 65 | 
            +
                b, c, t, h, w = x.shape
         | 
| 66 | 
            +
                pt, ph, pw = kernel_size
         | 
| 67 | 
            +
                pad_t = (pt - (t % pt)) % pt
         | 
| 68 | 
            +
                pad_h = (ph - (h % ph)) % ph
         | 
| 69 | 
            +
                pad_w = (pw - (w % pw)) % pw
         | 
| 70 | 
            +
                return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
         | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
            def center_down_sample_3d(x, kernel_size):
         | 
| 74 | 
            +
                # pt, ph, pw = kernel_size
         | 
| 75 | 
            +
                # cp = (pt * ph * pw) // 2
         | 
| 76 | 
            +
                # xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
         | 
| 77 | 
            +
                # xc = xp[cp]
         | 
| 78 | 
            +
                # return xc
         | 
| 79 | 
            +
                return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
             | 
| 82 | 
            +
            def get_cu_seqlens(text_mask, img_len):
         | 
| 83 | 
            +
                batch_size = text_mask.shape[0]
         | 
| 84 | 
            +
                text_len = text_mask.sum(dim=1)
         | 
| 85 | 
            +
                max_len = text_mask.shape[1] + img_len
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                for i in range(batch_size):
         | 
| 90 | 
            +
                    s = text_len[i] + img_len
         | 
| 91 | 
            +
                    s1 = i * max_len + s
         | 
| 92 | 
            +
                    s2 = (i + 1) * max_len
         | 
| 93 | 
            +
                    cu_seqlens[2 * i + 1] = s1
         | 
| 94 | 
            +
                    cu_seqlens[2 * i + 2] = s2
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                return cu_seqlens
         | 
| 97 | 
            +
             | 
| 98 | 
            +
             | 
| 99 | 
            +
            def apply_rotary_emb_transposed(x, freqs_cis):
         | 
| 100 | 
            +
                cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
         | 
| 101 | 
            +
                x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
         | 
| 102 | 
            +
                x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
         | 
| 103 | 
            +
                out = x.float() * cos + x_rotated.float() * sin
         | 
| 104 | 
            +
                out = out.to(x)
         | 
| 105 | 
            +
                return out
         | 
| 106 | 
            +
             | 
| 107 | 
            +
             | 
| 108 | 
            +
            def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
         | 
| 109 | 
            +
                if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
         | 
| 110 | 
            +
                    if sageattn is not None:
         | 
| 111 | 
            +
                        x = sageattn(q, k, v, tensor_layout='NHD')
         | 
| 112 | 
            +
                        return x
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    if flash_attn_func is not None:
         | 
| 115 | 
            +
                        x = flash_attn_func(q, k, v)
         | 
| 116 | 
            +
                        return x
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    if xformers_attn_func is not None:
         | 
| 119 | 
            +
                        x = xformers_attn_func(q, k, v)
         | 
| 120 | 
            +
                        return x
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
         | 
| 123 | 
            +
                    return x
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                B, L, H, C = q.shape
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                q = q.flatten(0, 1)
         | 
| 128 | 
            +
                k = k.flatten(0, 1)
         | 
| 129 | 
            +
                v = v.flatten(0, 1)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                if sageattn_varlen is not None:
         | 
| 132 | 
            +
                    x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
         | 
| 133 | 
            +
                elif flash_attn_varlen_func is not None:
         | 
| 134 | 
            +
                    x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
         | 
| 135 | 
            +
                else:
         | 
| 136 | 
            +
                    raise NotImplementedError('No Attn Installed!')
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                x = x.unflatten(0, (B, L))
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                return x
         | 
| 141 | 
            +
             | 
| 142 | 
            +
             | 
| 143 | 
            +
            class HunyuanAttnProcessorFlashAttnDouble:
         | 
| 144 | 
            +
                def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
         | 
| 145 | 
            +
                    cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    query = attn.to_q(hidden_states)
         | 
| 148 | 
            +
                    key = attn.to_k(hidden_states)
         | 
| 149 | 
            +
                    value = attn.to_v(hidden_states)
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    query = query.unflatten(2, (attn.heads, -1))
         | 
| 152 | 
            +
                    key = key.unflatten(2, (attn.heads, -1))
         | 
| 153 | 
            +
                    value = value.unflatten(2, (attn.heads, -1))
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                    query = attn.norm_q(query)
         | 
| 156 | 
            +
                    key = attn.norm_k(key)
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    query = apply_rotary_emb_transposed(query, image_rotary_emb)
         | 
| 159 | 
            +
                    key = apply_rotary_emb_transposed(key, image_rotary_emb)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    encoder_query = attn.add_q_proj(encoder_hidden_states)
         | 
| 162 | 
            +
                    encoder_key = attn.add_k_proj(encoder_hidden_states)
         | 
| 163 | 
            +
                    encoder_value = attn.add_v_proj(encoder_hidden_states)
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
         | 
| 166 | 
            +
                    encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
         | 
| 167 | 
            +
                    encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    encoder_query = attn.norm_added_q(encoder_query)
         | 
| 170 | 
            +
                    encoder_key = attn.norm_added_k(encoder_key)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    query = torch.cat([query, encoder_query], dim=1)
         | 
| 173 | 
            +
                    key = torch.cat([key, encoder_key], dim=1)
         | 
| 174 | 
            +
                    value = torch.cat([value, encoder_value], dim=1)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                    hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
         | 
| 177 | 
            +
                    hidden_states = hidden_states.flatten(-2)
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    txt_length = encoder_hidden_states.shape[1]
         | 
| 180 | 
            +
                    hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    hidden_states = attn.to_out[0](hidden_states)
         | 
| 183 | 
            +
                    hidden_states = attn.to_out[1](hidden_states)
         | 
| 184 | 
            +
                    encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    return hidden_states, encoder_hidden_states
         | 
| 187 | 
            +
             | 
| 188 | 
            +
             | 
| 189 | 
            +
            class HunyuanAttnProcessorFlashAttnSingle:
         | 
| 190 | 
            +
                def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
         | 
| 191 | 
            +
                    cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                    query = attn.to_q(hidden_states)
         | 
| 196 | 
            +
                    key = attn.to_k(hidden_states)
         | 
| 197 | 
            +
                    value = attn.to_v(hidden_states)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    query = query.unflatten(2, (attn.heads, -1))
         | 
| 200 | 
            +
                    key = key.unflatten(2, (attn.heads, -1))
         | 
| 201 | 
            +
                    value = value.unflatten(2, (attn.heads, -1))
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    query = attn.norm_q(query)
         | 
| 204 | 
            +
                    key = attn.norm_k(key)
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    txt_length = encoder_hidden_states.shape[1]
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
         | 
| 209 | 
            +
                    key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
         | 
| 212 | 
            +
                    hidden_states = hidden_states.flatten(-2)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    return hidden_states, encoder_hidden_states
         | 
| 217 | 
            +
             | 
| 218 | 
            +
             | 
| 219 | 
            +
            class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
         | 
| 220 | 
            +
                def __init__(self, embedding_dim, pooled_projection_dim):
         | 
| 221 | 
            +
                    super().__init__()
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
         | 
| 224 | 
            +
                    self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
         | 
| 225 | 
            +
                    self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
         | 
| 226 | 
            +
                    self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                def forward(self, timestep, guidance, pooled_projection):
         | 
| 229 | 
            +
                    timesteps_proj = self.time_proj(timestep)
         | 
| 230 | 
            +
                    timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    guidance_proj = self.time_proj(guidance)
         | 
| 233 | 
            +
                    guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                    time_guidance_emb = timesteps_emb + guidance_emb
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                    pooled_projections = self.text_embedder(pooled_projection)
         | 
| 238 | 
            +
                    conditioning = time_guidance_emb + pooled_projections
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                    return conditioning
         | 
| 241 | 
            +
             | 
| 242 | 
            +
             | 
| 243 | 
            +
            class CombinedTimestepTextProjEmbeddings(nn.Module):
         | 
| 244 | 
            +
                def __init__(self, embedding_dim, pooled_projection_dim):
         | 
| 245 | 
            +
                    super().__init__()
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
         | 
| 248 | 
            +
                    self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
         | 
| 249 | 
            +
                    self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                def forward(self, timestep, pooled_projection):
         | 
| 252 | 
            +
                    timesteps_proj = self.time_proj(timestep)
         | 
| 253 | 
            +
                    timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                    pooled_projections = self.text_embedder(pooled_projection)
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    conditioning = timesteps_emb + pooled_projections
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    return conditioning
         | 
| 260 | 
            +
             | 
| 261 | 
            +
             | 
| 262 | 
            +
            class HunyuanVideoAdaNorm(nn.Module):
         | 
| 263 | 
            +
                def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
         | 
| 264 | 
            +
                    super().__init__()
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    out_features = out_features or 2 * in_features
         | 
| 267 | 
            +
                    self.linear = nn.Linear(in_features, out_features)
         | 
| 268 | 
            +
                    self.nonlinearity = nn.SiLU()
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                def forward(
         | 
| 271 | 
            +
                    self, temb: torch.Tensor
         | 
| 272 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
         | 
| 273 | 
            +
                    temb = self.linear(self.nonlinearity(temb))
         | 
| 274 | 
            +
                    gate_msa, gate_mlp = temb.chunk(2, dim=-1)
         | 
| 275 | 
            +
                    gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
         | 
| 276 | 
            +
                    return gate_msa, gate_mlp
         | 
| 277 | 
            +
             | 
| 278 | 
            +
             | 
| 279 | 
            +
            class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
         | 
| 280 | 
            +
                def __init__(
         | 
| 281 | 
            +
                    self,
         | 
| 282 | 
            +
                    num_attention_heads: int,
         | 
| 283 | 
            +
                    attention_head_dim: int,
         | 
| 284 | 
            +
                    mlp_width_ratio: str = 4.0,
         | 
| 285 | 
            +
                    mlp_drop_rate: float = 0.0,
         | 
| 286 | 
            +
                    attention_bias: bool = True,
         | 
| 287 | 
            +
                ) -> None:
         | 
| 288 | 
            +
                    super().__init__()
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                    hidden_size = num_attention_heads * attention_head_dim
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                    self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
         | 
| 293 | 
            +
                    self.attn = Attention(
         | 
| 294 | 
            +
                        query_dim=hidden_size,
         | 
| 295 | 
            +
                        cross_attention_dim=None,
         | 
| 296 | 
            +
                        heads=num_attention_heads,
         | 
| 297 | 
            +
                        dim_head=attention_head_dim,
         | 
| 298 | 
            +
                        bias=attention_bias,
         | 
| 299 | 
            +
                    )
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
         | 
| 302 | 
            +
                    self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                    self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                def forward(
         | 
| 307 | 
            +
                    self,
         | 
| 308 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 309 | 
            +
                    temb: torch.Tensor,
         | 
| 310 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 311 | 
            +
                ) -> torch.Tensor:
         | 
| 312 | 
            +
                    norm_hidden_states = self.norm1(hidden_states)
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    attn_output = self.attn(
         | 
| 315 | 
            +
                        hidden_states=norm_hidden_states,
         | 
| 316 | 
            +
                        encoder_hidden_states=None,
         | 
| 317 | 
            +
                        attention_mask=attention_mask,
         | 
| 318 | 
            +
                    )
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    gate_msa, gate_mlp = self.norm_out(temb)
         | 
| 321 | 
            +
                    hidden_states = hidden_states + attn_output * gate_msa
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    ff_output = self.ff(self.norm2(hidden_states))
         | 
| 324 | 
            +
                    hidden_states = hidden_states + ff_output * gate_mlp
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                    return hidden_states
         | 
| 327 | 
            +
             | 
| 328 | 
            +
             | 
| 329 | 
            +
            class HunyuanVideoIndividualTokenRefiner(nn.Module):
         | 
| 330 | 
            +
                def __init__(
         | 
| 331 | 
            +
                    self,
         | 
| 332 | 
            +
                    num_attention_heads: int,
         | 
| 333 | 
            +
                    attention_head_dim: int,
         | 
| 334 | 
            +
                    num_layers: int,
         | 
| 335 | 
            +
                    mlp_width_ratio: float = 4.0,
         | 
| 336 | 
            +
                    mlp_drop_rate: float = 0.0,
         | 
| 337 | 
            +
                    attention_bias: bool = True,
         | 
| 338 | 
            +
                ) -> None:
         | 
| 339 | 
            +
                    super().__init__()
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    self.refiner_blocks = nn.ModuleList(
         | 
| 342 | 
            +
                        [
         | 
| 343 | 
            +
                            HunyuanVideoIndividualTokenRefinerBlock(
         | 
| 344 | 
            +
                                num_attention_heads=num_attention_heads,
         | 
| 345 | 
            +
                                attention_head_dim=attention_head_dim,
         | 
| 346 | 
            +
                                mlp_width_ratio=mlp_width_ratio,
         | 
| 347 | 
            +
                                mlp_drop_rate=mlp_drop_rate,
         | 
| 348 | 
            +
                                attention_bias=attention_bias,
         | 
| 349 | 
            +
                            )
         | 
| 350 | 
            +
                            for _ in range(num_layers)
         | 
| 351 | 
            +
                        ]
         | 
| 352 | 
            +
                    )
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                def forward(
         | 
| 355 | 
            +
                    self,
         | 
| 356 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 357 | 
            +
                    temb: torch.Tensor,
         | 
| 358 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 359 | 
            +
                ) -> None:
         | 
| 360 | 
            +
                    self_attn_mask = None
         | 
| 361 | 
            +
                    if attention_mask is not None:
         | 
| 362 | 
            +
                        batch_size = attention_mask.shape[0]
         | 
| 363 | 
            +
                        seq_len = attention_mask.shape[1]
         | 
| 364 | 
            +
                        attention_mask = attention_mask.to(hidden_states.device).bool()
         | 
| 365 | 
            +
                        self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
         | 
| 366 | 
            +
                        self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
         | 
| 367 | 
            +
                        self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
         | 
| 368 | 
            +
                        self_attn_mask[:, :, :, 0] = True
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                    for block in self.refiner_blocks:
         | 
| 371 | 
            +
                        hidden_states = block(hidden_states, temb, self_attn_mask)
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    return hidden_states
         | 
| 374 | 
            +
             | 
| 375 | 
            +
             | 
| 376 | 
            +
            class HunyuanVideoTokenRefiner(nn.Module):
         | 
| 377 | 
            +
                def __init__(
         | 
| 378 | 
            +
                    self,
         | 
| 379 | 
            +
                    in_channels: int,
         | 
| 380 | 
            +
                    num_attention_heads: int,
         | 
| 381 | 
            +
                    attention_head_dim: int,
         | 
| 382 | 
            +
                    num_layers: int,
         | 
| 383 | 
            +
                    mlp_ratio: float = 4.0,
         | 
| 384 | 
            +
                    mlp_drop_rate: float = 0.0,
         | 
| 385 | 
            +
                    attention_bias: bool = True,
         | 
| 386 | 
            +
                ) -> None:
         | 
| 387 | 
            +
                    super().__init__()
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                    hidden_size = num_attention_heads * attention_head_dim
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    self.time_text_embed = CombinedTimestepTextProjEmbeddings(
         | 
| 392 | 
            +
                        embedding_dim=hidden_size, pooled_projection_dim=in_channels
         | 
| 393 | 
            +
                    )
         | 
| 394 | 
            +
                    self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
         | 
| 395 | 
            +
                    self.token_refiner = HunyuanVideoIndividualTokenRefiner(
         | 
| 396 | 
            +
                        num_attention_heads=num_attention_heads,
         | 
| 397 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 398 | 
            +
                        num_layers=num_layers,
         | 
| 399 | 
            +
                        mlp_width_ratio=mlp_ratio,
         | 
| 400 | 
            +
                        mlp_drop_rate=mlp_drop_rate,
         | 
| 401 | 
            +
                        attention_bias=attention_bias,
         | 
| 402 | 
            +
                    )
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                def forward(
         | 
| 405 | 
            +
                    self,
         | 
| 406 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 407 | 
            +
                    timestep: torch.LongTensor,
         | 
| 408 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 409 | 
            +
                ) -> torch.Tensor:
         | 
| 410 | 
            +
                    if attention_mask is None:
         | 
| 411 | 
            +
                        pooled_projections = hidden_states.mean(dim=1)
         | 
| 412 | 
            +
                    else:
         | 
| 413 | 
            +
                        original_dtype = hidden_states.dtype
         | 
| 414 | 
            +
                        mask_float = attention_mask.float().unsqueeze(-1)
         | 
| 415 | 
            +
                        pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
         | 
| 416 | 
            +
                        pooled_projections = pooled_projections.to(original_dtype)
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    temb = self.time_text_embed(timestep, pooled_projections)
         | 
| 419 | 
            +
                    hidden_states = self.proj_in(hidden_states)
         | 
| 420 | 
            +
                    hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                    return hidden_states
         | 
| 423 | 
            +
             | 
| 424 | 
            +
             | 
| 425 | 
            +
            class HunyuanVideoRotaryPosEmbed(nn.Module):
         | 
| 426 | 
            +
                def __init__(self, rope_dim, theta):
         | 
| 427 | 
            +
                    super().__init__()
         | 
| 428 | 
            +
                    self.DT, self.DY, self.DX = rope_dim
         | 
| 429 | 
            +
                    self.theta = theta
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                @torch.no_grad()
         | 
| 432 | 
            +
                def get_frequency(self, dim, pos):
         | 
| 433 | 
            +
                    T, H, W = pos.shape
         | 
| 434 | 
            +
                    freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
         | 
| 435 | 
            +
                    freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
         | 
| 436 | 
            +
                    return freqs.cos(), freqs.sin()
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                @torch.no_grad()
         | 
| 439 | 
            +
                def forward_inner(self, frame_indices, height, width, device):
         | 
| 440 | 
            +
                    GT, GY, GX = torch.meshgrid(
         | 
| 441 | 
            +
                        frame_indices.to(device=device, dtype=torch.float32),
         | 
| 442 | 
            +
                        torch.arange(0, height, device=device, dtype=torch.float32),
         | 
| 443 | 
            +
                        torch.arange(0, width, device=device, dtype=torch.float32),
         | 
| 444 | 
            +
                        indexing="ij"
         | 
| 445 | 
            +
                    )
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                    FCT, FST = self.get_frequency(self.DT, GT)
         | 
| 448 | 
            +
                    FCY, FSY = self.get_frequency(self.DY, GY)
         | 
| 449 | 
            +
                    FCX, FSX = self.get_frequency(self.DX, GX)
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                    return result.to(device)
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                @torch.no_grad()
         | 
| 456 | 
            +
                def forward(self, frame_indices, height, width, device):
         | 
| 457 | 
            +
                    frame_indices = frame_indices.unbind(0)
         | 
| 458 | 
            +
                    results = [self.forward_inner(f, height, width, device) for f in frame_indices]
         | 
| 459 | 
            +
                    results = torch.stack(results, dim=0)
         | 
| 460 | 
            +
                    return results
         | 
| 461 | 
            +
             | 
| 462 | 
            +
             | 
| 463 | 
            +
            class AdaLayerNormZero(nn.Module):
         | 
| 464 | 
            +
                def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
         | 
| 465 | 
            +
                    super().__init__()
         | 
| 466 | 
            +
                    self.silu = nn.SiLU()
         | 
| 467 | 
            +
                    self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
         | 
| 468 | 
            +
                    if norm_type == "layer_norm":
         | 
| 469 | 
            +
                        self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
         | 
| 470 | 
            +
                    else:
         | 
| 471 | 
            +
                        raise ValueError(f"unknown norm_type {norm_type}")
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                def forward(
         | 
| 474 | 
            +
                    self,
         | 
| 475 | 
            +
                    x: torch.Tensor,
         | 
| 476 | 
            +
                    emb: Optional[torch.Tensor] = None,
         | 
| 477 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
         | 
| 478 | 
            +
                    emb = emb.unsqueeze(-2)
         | 
| 479 | 
            +
                    emb = self.linear(self.silu(emb))
         | 
| 480 | 
            +
                    shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
         | 
| 481 | 
            +
                    x = self.norm(x) * (1 + scale_msa) + shift_msa
         | 
| 482 | 
            +
                    return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
         | 
| 483 | 
            +
             | 
| 484 | 
            +
             | 
| 485 | 
            +
            class AdaLayerNormZeroSingle(nn.Module):
         | 
| 486 | 
            +
                def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
         | 
| 487 | 
            +
                    super().__init__()
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                    self.silu = nn.SiLU()
         | 
| 490 | 
            +
                    self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
         | 
| 491 | 
            +
                    if norm_type == "layer_norm":
         | 
| 492 | 
            +
                        self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
         | 
| 493 | 
            +
                    else:
         | 
| 494 | 
            +
                        raise ValueError(f"unknown norm_type {norm_type}")
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                def forward(
         | 
| 497 | 
            +
                    self,
         | 
| 498 | 
            +
                    x: torch.Tensor,
         | 
| 499 | 
            +
                    emb: Optional[torch.Tensor] = None,
         | 
| 500 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
         | 
| 501 | 
            +
                    emb = emb.unsqueeze(-2)
         | 
| 502 | 
            +
                    emb = self.linear(self.silu(emb))
         | 
| 503 | 
            +
                    shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
         | 
| 504 | 
            +
                    x = self.norm(x) * (1 + scale_msa) + shift_msa
         | 
| 505 | 
            +
                    return x, gate_msa
         | 
| 506 | 
            +
             | 
| 507 | 
            +
             | 
| 508 | 
            +
            class AdaLayerNormContinuous(nn.Module):
         | 
| 509 | 
            +
                def __init__(
         | 
| 510 | 
            +
                    self,
         | 
| 511 | 
            +
                    embedding_dim: int,
         | 
| 512 | 
            +
                    conditioning_embedding_dim: int,
         | 
| 513 | 
            +
                    elementwise_affine=True,
         | 
| 514 | 
            +
                    eps=1e-5,
         | 
| 515 | 
            +
                    bias=True,
         | 
| 516 | 
            +
                    norm_type="layer_norm",
         | 
| 517 | 
            +
                ):
         | 
| 518 | 
            +
                    super().__init__()
         | 
| 519 | 
            +
                    self.silu = nn.SiLU()
         | 
| 520 | 
            +
                    self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
         | 
| 521 | 
            +
                    if norm_type == "layer_norm":
         | 
| 522 | 
            +
                        self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
         | 
| 523 | 
            +
                    else:
         | 
| 524 | 
            +
                        raise ValueError(f"unknown norm_type {norm_type}")
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
         | 
| 527 | 
            +
                    emb = emb.unsqueeze(-2)
         | 
| 528 | 
            +
                    emb = self.linear(self.silu(emb))
         | 
| 529 | 
            +
                    scale, shift = emb.chunk(2, dim=-1)
         | 
| 530 | 
            +
                    x = self.norm(x) * (1 + scale) + shift
         | 
| 531 | 
            +
                    return x
         | 
| 532 | 
            +
             | 
| 533 | 
            +
             | 
| 534 | 
            +
            class HunyuanVideoSingleTransformerBlock(nn.Module):
         | 
| 535 | 
            +
                def __init__(
         | 
| 536 | 
            +
                    self,
         | 
| 537 | 
            +
                    num_attention_heads: int,
         | 
| 538 | 
            +
                    attention_head_dim: int,
         | 
| 539 | 
            +
                    mlp_ratio: float = 4.0,
         | 
| 540 | 
            +
                    qk_norm: str = "rms_norm",
         | 
| 541 | 
            +
                ) -> None:
         | 
| 542 | 
            +
                    super().__init__()
         | 
| 543 | 
            +
             | 
| 544 | 
            +
                    hidden_size = num_attention_heads * attention_head_dim
         | 
| 545 | 
            +
                    mlp_dim = int(hidden_size * mlp_ratio)
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                    self.attn = Attention(
         | 
| 548 | 
            +
                        query_dim=hidden_size,
         | 
| 549 | 
            +
                        cross_attention_dim=None,
         | 
| 550 | 
            +
                        dim_head=attention_head_dim,
         | 
| 551 | 
            +
                        heads=num_attention_heads,
         | 
| 552 | 
            +
                        out_dim=hidden_size,
         | 
| 553 | 
            +
                        bias=True,
         | 
| 554 | 
            +
                        processor=HunyuanAttnProcessorFlashAttnSingle(),
         | 
| 555 | 
            +
                        qk_norm=qk_norm,
         | 
| 556 | 
            +
                        eps=1e-6,
         | 
| 557 | 
            +
                        pre_only=True,
         | 
| 558 | 
            +
                    )
         | 
| 559 | 
            +
             | 
| 560 | 
            +
                    self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
         | 
| 561 | 
            +
                    self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
         | 
| 562 | 
            +
                    self.act_mlp = nn.GELU(approximate="tanh")
         | 
| 563 | 
            +
                    self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                def forward(
         | 
| 566 | 
            +
                    self,
         | 
| 567 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 568 | 
            +
                    encoder_hidden_states: torch.Tensor,
         | 
| 569 | 
            +
                    temb: torch.Tensor,
         | 
| 570 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 571 | 
            +
                    image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 572 | 
            +
                ) -> torch.Tensor:
         | 
| 573 | 
            +
                    text_seq_length = encoder_hidden_states.shape[1]
         | 
| 574 | 
            +
                    hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
         | 
| 575 | 
            +
             | 
| 576 | 
            +
                    residual = hidden_states
         | 
| 577 | 
            +
             | 
| 578 | 
            +
                    # 1. Input normalization
         | 
| 579 | 
            +
                    norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
         | 
| 580 | 
            +
                    mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
         | 
| 581 | 
            +
             | 
| 582 | 
            +
                    norm_hidden_states, norm_encoder_hidden_states = (
         | 
| 583 | 
            +
                        norm_hidden_states[:, :-text_seq_length, :],
         | 
| 584 | 
            +
                        norm_hidden_states[:, -text_seq_length:, :],
         | 
| 585 | 
            +
                    )
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                    # 2. Attention
         | 
| 588 | 
            +
                    attn_output, context_attn_output = self.attn(
         | 
| 589 | 
            +
                        hidden_states=norm_hidden_states,
         | 
| 590 | 
            +
                        encoder_hidden_states=norm_encoder_hidden_states,
         | 
| 591 | 
            +
                        attention_mask=attention_mask,
         | 
| 592 | 
            +
                        image_rotary_emb=image_rotary_emb,
         | 
| 593 | 
            +
                    )
         | 
| 594 | 
            +
                    attn_output = torch.cat([attn_output, context_attn_output], dim=1)
         | 
| 595 | 
            +
             | 
| 596 | 
            +
                    # 3. Modulation and residual connection
         | 
| 597 | 
            +
                    hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
         | 
| 598 | 
            +
                    hidden_states = gate * self.proj_out(hidden_states)
         | 
| 599 | 
            +
                    hidden_states = hidden_states + residual
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                    hidden_states, encoder_hidden_states = (
         | 
| 602 | 
            +
                        hidden_states[:, :-text_seq_length, :],
         | 
| 603 | 
            +
                        hidden_states[:, -text_seq_length:, :],
         | 
| 604 | 
            +
                    )
         | 
| 605 | 
            +
                    return hidden_states, encoder_hidden_states
         | 
| 606 | 
            +
             | 
| 607 | 
            +
             | 
| 608 | 
            +
            class HunyuanVideoTransformerBlock(nn.Module):
         | 
| 609 | 
            +
                def __init__(
         | 
| 610 | 
            +
                    self,
         | 
| 611 | 
            +
                    num_attention_heads: int,
         | 
| 612 | 
            +
                    attention_head_dim: int,
         | 
| 613 | 
            +
                    mlp_ratio: float,
         | 
| 614 | 
            +
                    qk_norm: str = "rms_norm",
         | 
| 615 | 
            +
                ) -> None:
         | 
| 616 | 
            +
                    super().__init__()
         | 
| 617 | 
            +
             | 
| 618 | 
            +
                    hidden_size = num_attention_heads * attention_head_dim
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                    self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
         | 
| 621 | 
            +
                    self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
         | 
| 622 | 
            +
             | 
| 623 | 
            +
                    self.attn = Attention(
         | 
| 624 | 
            +
                        query_dim=hidden_size,
         | 
| 625 | 
            +
                        cross_attention_dim=None,
         | 
| 626 | 
            +
                        added_kv_proj_dim=hidden_size,
         | 
| 627 | 
            +
                        dim_head=attention_head_dim,
         | 
| 628 | 
            +
                        heads=num_attention_heads,
         | 
| 629 | 
            +
                        out_dim=hidden_size,
         | 
| 630 | 
            +
                        context_pre_only=False,
         | 
| 631 | 
            +
                        bias=True,
         | 
| 632 | 
            +
                        processor=HunyuanAttnProcessorFlashAttnDouble(),
         | 
| 633 | 
            +
                        qk_norm=qk_norm,
         | 
| 634 | 
            +
                        eps=1e-6,
         | 
| 635 | 
            +
                    )
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                    self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
         | 
| 638 | 
            +
                    self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
         | 
| 639 | 
            +
             | 
| 640 | 
            +
                    self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
         | 
| 641 | 
            +
                    self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
         | 
| 642 | 
            +
             | 
| 643 | 
            +
                def forward(
         | 
| 644 | 
            +
                    self,
         | 
| 645 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 646 | 
            +
                    encoder_hidden_states: torch.Tensor,
         | 
| 647 | 
            +
                    temb: torch.Tensor,
         | 
| 648 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 649 | 
            +
                    freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 650 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 651 | 
            +
                    # 1. Input normalization
         | 
| 652 | 
            +
                    norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
         | 
| 653 | 
            +
                    norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
         | 
| 654 | 
            +
             | 
| 655 | 
            +
                    # 2. Joint attention
         | 
| 656 | 
            +
                    attn_output, context_attn_output = self.attn(
         | 
| 657 | 
            +
                        hidden_states=norm_hidden_states,
         | 
| 658 | 
            +
                        encoder_hidden_states=norm_encoder_hidden_states,
         | 
| 659 | 
            +
                        attention_mask=attention_mask,
         | 
| 660 | 
            +
                        image_rotary_emb=freqs_cis,
         | 
| 661 | 
            +
                    )
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                    # 3. Modulation and residual connection
         | 
| 664 | 
            +
                    hidden_states = hidden_states + attn_output * gate_msa
         | 
| 665 | 
            +
                    encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
         | 
| 666 | 
            +
             | 
| 667 | 
            +
                    norm_hidden_states = self.norm2(hidden_states)
         | 
| 668 | 
            +
                    norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
         | 
| 669 | 
            +
             | 
| 670 | 
            +
                    norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
         | 
| 671 | 
            +
                    norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
         | 
| 672 | 
            +
             | 
| 673 | 
            +
                    # 4. Feed-forward
         | 
| 674 | 
            +
                    ff_output = self.ff(norm_hidden_states)
         | 
| 675 | 
            +
                    context_ff_output = self.ff_context(norm_encoder_hidden_states)
         | 
| 676 | 
            +
             | 
| 677 | 
            +
                    hidden_states = hidden_states + gate_mlp * ff_output
         | 
| 678 | 
            +
                    encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
         | 
| 679 | 
            +
             | 
| 680 | 
            +
                    return hidden_states, encoder_hidden_states
         | 
| 681 | 
            +
             | 
| 682 | 
            +
             | 
| 683 | 
            +
            class ClipVisionProjection(nn.Module):
         | 
| 684 | 
            +
                def __init__(self, in_channels, out_channels):
         | 
| 685 | 
            +
                    super().__init__()
         | 
| 686 | 
            +
                    self.up = nn.Linear(in_channels, out_channels * 3)
         | 
| 687 | 
            +
                    self.down = nn.Linear(out_channels * 3, out_channels)
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                def forward(self, x):
         | 
| 690 | 
            +
                    projected_x = self.down(nn.functional.silu(self.up(x)))
         | 
| 691 | 
            +
                    return projected_x
         | 
| 692 | 
            +
             | 
| 693 | 
            +
             | 
| 694 | 
            +
            class HunyuanVideoPatchEmbed(nn.Module):
         | 
| 695 | 
            +
                def __init__(self, patch_size, in_chans, embed_dim):
         | 
| 696 | 
            +
                    super().__init__()
         | 
| 697 | 
            +
                    self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
         | 
| 698 | 
            +
             | 
| 699 | 
            +
             | 
| 700 | 
            +
            class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
         | 
| 701 | 
            +
                def __init__(self, inner_dim):
         | 
| 702 | 
            +
                    super().__init__()
         | 
| 703 | 
            +
                    self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
         | 
| 704 | 
            +
                    self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
         | 
| 705 | 
            +
                    self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                @torch.no_grad()
         | 
| 708 | 
            +
                def initialize_weight_from_another_conv3d(self, another_layer):
         | 
| 709 | 
            +
                    weight = another_layer.weight.detach().clone()
         | 
| 710 | 
            +
                    bias = another_layer.bias.detach().clone()
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                    sd = {
         | 
| 713 | 
            +
                        'proj.weight': weight.clone(),
         | 
| 714 | 
            +
                        'proj.bias': bias.clone(),
         | 
| 715 | 
            +
                        'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
         | 
| 716 | 
            +
                        'proj_2x.bias': bias.clone(),
         | 
| 717 | 
            +
                        'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
         | 
| 718 | 
            +
                        'proj_4x.bias': bias.clone(),
         | 
| 719 | 
            +
                    }
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                    sd = {k: v.clone() for k, v in sd.items()}
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                    self.load_state_dict(sd)
         | 
| 724 | 
            +
                    return
         | 
| 725 | 
            +
             | 
| 726 | 
            +
             | 
| 727 | 
            +
            class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
         | 
| 728 | 
            +
                @register_to_config
         | 
| 729 | 
            +
                def __init__(
         | 
| 730 | 
            +
                    self,
         | 
| 731 | 
            +
                    in_channels: int = 16,
         | 
| 732 | 
            +
                    out_channels: int = 16,
         | 
| 733 | 
            +
                    num_attention_heads: int = 24,
         | 
| 734 | 
            +
                    attention_head_dim: int = 128,
         | 
| 735 | 
            +
                    num_layers: int = 20,
         | 
| 736 | 
            +
                    num_single_layers: int = 40,
         | 
| 737 | 
            +
                    num_refiner_layers: int = 2,
         | 
| 738 | 
            +
                    mlp_ratio: float = 4.0,
         | 
| 739 | 
            +
                    patch_size: int = 2,
         | 
| 740 | 
            +
                    patch_size_t: int = 1,
         | 
| 741 | 
            +
                    qk_norm: str = "rms_norm",
         | 
| 742 | 
            +
                    guidance_embeds: bool = True,
         | 
| 743 | 
            +
                    text_embed_dim: int = 4096,
         | 
| 744 | 
            +
                    pooled_projection_dim: int = 768,
         | 
| 745 | 
            +
                    rope_theta: float = 256.0,
         | 
| 746 | 
            +
                    rope_axes_dim: Tuple[int] = (16, 56, 56),
         | 
| 747 | 
            +
                    has_image_proj=False,
         | 
| 748 | 
            +
                    image_proj_dim=1152,
         | 
| 749 | 
            +
                    has_clean_x_embedder=False,
         | 
| 750 | 
            +
                ) -> None:
         | 
| 751 | 
            +
                    super().__init__()
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                    inner_dim = num_attention_heads * attention_head_dim
         | 
| 754 | 
            +
                    out_channels = out_channels or in_channels
         | 
| 755 | 
            +
             | 
| 756 | 
            +
                    # 1. Latent and condition embedders
         | 
| 757 | 
            +
                    self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
         | 
| 758 | 
            +
                    self.context_embedder = HunyuanVideoTokenRefiner(
         | 
| 759 | 
            +
                        text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
         | 
| 760 | 
            +
                    )
         | 
| 761 | 
            +
                    self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    self.clean_x_embedder = None
         | 
| 764 | 
            +
                    self.image_projection = None
         | 
| 765 | 
            +
             | 
| 766 | 
            +
                    # 2. RoPE
         | 
| 767 | 
            +
                    self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
         | 
| 768 | 
            +
             | 
| 769 | 
            +
                    # 3. Dual stream transformer blocks
         | 
| 770 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 771 | 
            +
                        [
         | 
| 772 | 
            +
                            HunyuanVideoTransformerBlock(
         | 
| 773 | 
            +
                                num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
         | 
| 774 | 
            +
                            )
         | 
| 775 | 
            +
                            for _ in range(num_layers)
         | 
| 776 | 
            +
                        ]
         | 
| 777 | 
            +
                    )
         | 
| 778 | 
            +
             | 
| 779 | 
            +
                    # 4. Single stream transformer blocks
         | 
| 780 | 
            +
                    self.single_transformer_blocks = nn.ModuleList(
         | 
| 781 | 
            +
                        [
         | 
| 782 | 
            +
                            HunyuanVideoSingleTransformerBlock(
         | 
| 783 | 
            +
                                num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
         | 
| 784 | 
            +
                            )
         | 
| 785 | 
            +
                            for _ in range(num_single_layers)
         | 
| 786 | 
            +
                        ]
         | 
| 787 | 
            +
                    )
         | 
| 788 | 
            +
             | 
| 789 | 
            +
                    # 5. Output projection
         | 
| 790 | 
            +
                    self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
         | 
| 791 | 
            +
                    self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
         | 
| 792 | 
            +
             | 
| 793 | 
            +
                    self.inner_dim = inner_dim
         | 
| 794 | 
            +
                    self.use_gradient_checkpointing = False
         | 
| 795 | 
            +
                    self.enable_teacache = False
         | 
| 796 | 
            +
             | 
| 797 | 
            +
                    if has_image_proj:
         | 
| 798 | 
            +
                        self.install_image_projection(image_proj_dim)
         | 
| 799 | 
            +
             | 
| 800 | 
            +
                    if has_clean_x_embedder:
         | 
| 801 | 
            +
                        self.install_clean_x_embedder()
         | 
| 802 | 
            +
             | 
| 803 | 
            +
                    self.high_quality_fp32_output_for_inference = False
         | 
| 804 | 
            +
             | 
| 805 | 
            +
                def install_image_projection(self, in_channels):
         | 
| 806 | 
            +
                    self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
         | 
| 807 | 
            +
                    self.config['has_image_proj'] = True
         | 
| 808 | 
            +
                    self.config['image_proj_dim'] = in_channels
         | 
| 809 | 
            +
             | 
| 810 | 
            +
                def install_clean_x_embedder(self):
         | 
| 811 | 
            +
                    self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
         | 
| 812 | 
            +
                    self.config['has_clean_x_embedder'] = True
         | 
| 813 | 
            +
             | 
| 814 | 
            +
                def enable_gradient_checkpointing(self):
         | 
| 815 | 
            +
                    self.use_gradient_checkpointing = True
         | 
| 816 | 
            +
                    print('self.use_gradient_checkpointing = True')
         | 
| 817 | 
            +
             | 
| 818 | 
            +
                def disable_gradient_checkpointing(self):
         | 
| 819 | 
            +
                    self.use_gradient_checkpointing = False
         | 
| 820 | 
            +
                    print('self.use_gradient_checkpointing = False')
         | 
| 821 | 
            +
             | 
| 822 | 
            +
                def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
         | 
| 823 | 
            +
                    self.enable_teacache = enable_teacache
         | 
| 824 | 
            +
                    self.cnt = 0
         | 
| 825 | 
            +
                    self.num_steps = num_steps
         | 
| 826 | 
            +
                    self.rel_l1_thresh = rel_l1_thresh  # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
         | 
| 827 | 
            +
                    self.accumulated_rel_l1_distance = 0
         | 
| 828 | 
            +
                    self.previous_modulated_input = None
         | 
| 829 | 
            +
                    self.previous_residual = None
         | 
| 830 | 
            +
                    self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                def gradient_checkpointing_method(self, block, *args):
         | 
| 833 | 
            +
                    if self.use_gradient_checkpointing:
         | 
| 834 | 
            +
                        result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
         | 
| 835 | 
            +
                    else:
         | 
| 836 | 
            +
                        result = block(*args)
         | 
| 837 | 
            +
                    return result
         | 
| 838 | 
            +
             | 
| 839 | 
            +
                def process_input_hidden_states(
         | 
| 840 | 
            +
                        self,
         | 
| 841 | 
            +
                        latents, latent_indices=None,
         | 
| 842 | 
            +
                        clean_latents=None, clean_latent_indices=None,
         | 
| 843 | 
            +
                        clean_latents_2x=None, clean_latent_2x_indices=None,
         | 
| 844 | 
            +
                        clean_latents_4x=None, clean_latent_4x_indices=None
         | 
| 845 | 
            +
                ):
         | 
| 846 | 
            +
                    hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
         | 
| 847 | 
            +
                    B, C, T, H, W = hidden_states.shape
         | 
| 848 | 
            +
             | 
| 849 | 
            +
                    if latent_indices is None:
         | 
| 850 | 
            +
                        latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
         | 
| 851 | 
            +
             | 
| 852 | 
            +
                    hidden_states = hidden_states.flatten(2).transpose(1, 2)
         | 
| 853 | 
            +
             | 
| 854 | 
            +
                    rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
         | 
| 855 | 
            +
                    rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
         | 
| 856 | 
            +
             | 
| 857 | 
            +
                    if clean_latents is not None and clean_latent_indices is not None:
         | 
| 858 | 
            +
                        clean_latents = clean_latents.to(hidden_states)
         | 
| 859 | 
            +
                        clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
         | 
| 860 | 
            +
                        clean_latents = clean_latents.flatten(2).transpose(1, 2)
         | 
| 861 | 
            +
             | 
| 862 | 
            +
                        clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
         | 
| 863 | 
            +
                        clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
         | 
| 864 | 
            +
             | 
| 865 | 
            +
                        hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
         | 
| 866 | 
            +
                        rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
         | 
| 867 | 
            +
             | 
| 868 | 
            +
                    if clean_latents_2x is not None and clean_latent_2x_indices is not None:
         | 
| 869 | 
            +
                        clean_latents_2x = clean_latents_2x.to(hidden_states)
         | 
| 870 | 
            +
                        clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
         | 
| 871 | 
            +
                        clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
         | 
| 872 | 
            +
                        clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
         | 
| 873 | 
            +
             | 
| 874 | 
            +
                        clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
         | 
| 875 | 
            +
                        clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
         | 
| 876 | 
            +
                        clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
         | 
| 877 | 
            +
                        clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
         | 
| 878 | 
            +
             | 
| 879 | 
            +
                        hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
         | 
| 880 | 
            +
                        rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
         | 
| 881 | 
            +
             | 
| 882 | 
            +
                    if clean_latents_4x is not None and clean_latent_4x_indices is not None:
         | 
| 883 | 
            +
                        clean_latents_4x = clean_latents_4x.to(hidden_states)
         | 
| 884 | 
            +
                        clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
         | 
| 885 | 
            +
                        clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
         | 
| 886 | 
            +
                        clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                        clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
         | 
| 889 | 
            +
                        clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
         | 
| 890 | 
            +
                        clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
         | 
| 891 | 
            +
                        clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
         | 
| 892 | 
            +
             | 
| 893 | 
            +
                        hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
         | 
| 894 | 
            +
                        rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
         | 
| 895 | 
            +
             | 
| 896 | 
            +
                    return hidden_states, rope_freqs
         | 
| 897 | 
            +
             | 
| 898 | 
            +
                def forward(
         | 
| 899 | 
            +
                        self,
         | 
| 900 | 
            +
                        hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
         | 
| 901 | 
            +
                        latent_indices=None,
         | 
| 902 | 
            +
                        clean_latents=None, clean_latent_indices=None,
         | 
| 903 | 
            +
                        clean_latents_2x=None, clean_latent_2x_indices=None,
         | 
| 904 | 
            +
                        clean_latents_4x=None, clean_latent_4x_indices=None,
         | 
| 905 | 
            +
                        image_embeddings=None,
         | 
| 906 | 
            +
                        attention_kwargs=None, return_dict=True
         | 
| 907 | 
            +
                ):
         | 
| 908 | 
            +
             | 
| 909 | 
            +
                    if attention_kwargs is None:
         | 
| 910 | 
            +
                        attention_kwargs = {}
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                    batch_size, num_channels, num_frames, height, width = hidden_states.shape
         | 
| 913 | 
            +
                    p, p_t = self.config['patch_size'], self.config['patch_size_t']
         | 
| 914 | 
            +
                    post_patch_num_frames = num_frames // p_t
         | 
| 915 | 
            +
                    post_patch_height = height // p
         | 
| 916 | 
            +
                    post_patch_width = width // p
         | 
| 917 | 
            +
                    original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
         | 
| 918 | 
            +
             | 
| 919 | 
            +
                    hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
         | 
| 920 | 
            +
             | 
| 921 | 
            +
                    temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
         | 
| 922 | 
            +
                    encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
         | 
| 923 | 
            +
             | 
| 924 | 
            +
                    if self.image_projection is not None:
         | 
| 925 | 
            +
                        assert image_embeddings is not None, 'You must use image embeddings!'
         | 
| 926 | 
            +
                        extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
         | 
| 927 | 
            +
                        extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
         | 
| 928 | 
            +
             | 
| 929 | 
            +
                        # must cat before (not after) encoder_hidden_states, due to attn masking
         | 
| 930 | 
            +
                        encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
         | 
| 931 | 
            +
                        encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
         | 
| 932 | 
            +
             | 
| 933 | 
            +
                    if batch_size == 1:
         | 
| 934 | 
            +
                        # When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
         | 
| 935 | 
            +
                        # If they are not same, then their impls are wrong. Ours are always the correct one.
         | 
| 936 | 
            +
                        text_len = encoder_attention_mask.sum().item()
         | 
| 937 | 
            +
                        encoder_hidden_states = encoder_hidden_states[:, :text_len]
         | 
| 938 | 
            +
                        attention_mask = None, None, None, None
         | 
| 939 | 
            +
                    else:
         | 
| 940 | 
            +
                        img_seq_len = hidden_states.shape[1]
         | 
| 941 | 
            +
                        txt_seq_len = encoder_hidden_states.shape[1]
         | 
| 942 | 
            +
             | 
| 943 | 
            +
                        cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
         | 
| 944 | 
            +
                        cu_seqlens_kv = cu_seqlens_q
         | 
| 945 | 
            +
                        max_seqlen_q = img_seq_len + txt_seq_len
         | 
| 946 | 
            +
                        max_seqlen_kv = max_seqlen_q
         | 
| 947 | 
            +
             | 
| 948 | 
            +
                        attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
         | 
| 949 | 
            +
             | 
| 950 | 
            +
                    if self.enable_teacache:
         | 
| 951 | 
            +
                        modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
         | 
| 952 | 
            +
             | 
| 953 | 
            +
                        if self.cnt == 0 or self.cnt == self.num_steps-1:
         | 
| 954 | 
            +
                            should_calc = True
         | 
| 955 | 
            +
                            self.accumulated_rel_l1_distance = 0
         | 
| 956 | 
            +
                        else:
         | 
| 957 | 
            +
                            curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
         | 
| 958 | 
            +
                            self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
         | 
| 959 | 
            +
                            should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
         | 
| 960 | 
            +
             | 
| 961 | 
            +
                            if should_calc:
         | 
| 962 | 
            +
                                self.accumulated_rel_l1_distance = 0
         | 
| 963 | 
            +
             | 
| 964 | 
            +
                        self.previous_modulated_input = modulated_inp
         | 
| 965 | 
            +
                        self.cnt += 1
         | 
| 966 | 
            +
             | 
| 967 | 
            +
                        if self.cnt == self.num_steps:
         | 
| 968 | 
            +
                            self.cnt = 0
         | 
| 969 | 
            +
             | 
| 970 | 
            +
                        if not should_calc:
         | 
| 971 | 
            +
                            hidden_states = hidden_states + self.previous_residual
         | 
| 972 | 
            +
                        else:
         | 
| 973 | 
            +
                            ori_hidden_states = hidden_states.clone()
         | 
| 974 | 
            +
             | 
| 975 | 
            +
                            for block_id, block in enumerate(self.transformer_blocks):
         | 
| 976 | 
            +
                                hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
         | 
| 977 | 
            +
                                    block,
         | 
| 978 | 
            +
                                    hidden_states,
         | 
| 979 | 
            +
                                    encoder_hidden_states,
         | 
| 980 | 
            +
                                    temb,
         | 
| 981 | 
            +
                                    attention_mask,
         | 
| 982 | 
            +
                                    rope_freqs
         | 
| 983 | 
            +
                                )
         | 
| 984 | 
            +
             | 
| 985 | 
            +
                            for block_id, block in enumerate(self.single_transformer_blocks):
         | 
| 986 | 
            +
                                hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
         | 
| 987 | 
            +
                                    block,
         | 
| 988 | 
            +
                                    hidden_states,
         | 
| 989 | 
            +
                                    encoder_hidden_states,
         | 
| 990 | 
            +
                                    temb,
         | 
| 991 | 
            +
                                    attention_mask,
         | 
| 992 | 
            +
                                    rope_freqs
         | 
| 993 | 
            +
                                )
         | 
| 994 | 
            +
             | 
| 995 | 
            +
                            self.previous_residual = hidden_states - ori_hidden_states
         | 
| 996 | 
            +
                    else:
         | 
| 997 | 
            +
                        for block_id, block in enumerate(self.transformer_blocks):
         | 
| 998 | 
            +
                            hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
         | 
| 999 | 
            +
                                block,
         | 
| 1000 | 
            +
                                hidden_states,
         | 
| 1001 | 
            +
                                encoder_hidden_states,
         | 
| 1002 | 
            +
                                temb,
         | 
| 1003 | 
            +
                                attention_mask,
         | 
| 1004 | 
            +
                                rope_freqs
         | 
| 1005 | 
            +
                            )
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                        for block_id, block in enumerate(self.single_transformer_blocks):
         | 
| 1008 | 
            +
                            hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
         | 
| 1009 | 
            +
                                block,
         | 
| 1010 | 
            +
                                hidden_states,
         | 
| 1011 | 
            +
                                encoder_hidden_states,
         | 
| 1012 | 
            +
                                temb,
         | 
| 1013 | 
            +
                                attention_mask,
         | 
| 1014 | 
            +
                                rope_freqs
         | 
| 1015 | 
            +
                            )
         | 
| 1016 | 
            +
             | 
| 1017 | 
            +
                    hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
         | 
| 1018 | 
            +
             | 
| 1019 | 
            +
                    hidden_states = hidden_states[:, -original_context_length:, :]
         | 
| 1020 | 
            +
             | 
| 1021 | 
            +
                    if self.high_quality_fp32_output_for_inference:
         | 
| 1022 | 
            +
                        hidden_states = hidden_states.to(dtype=torch.float32)
         | 
| 1023 | 
            +
                        if self.proj_out.weight.dtype != torch.float32:
         | 
| 1024 | 
            +
                            self.proj_out.to(dtype=torch.float32)
         | 
| 1025 | 
            +
             | 
| 1026 | 
            +
                    hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
         | 
| 1027 | 
            +
             | 
| 1028 | 
            +
                    hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
         | 
| 1029 | 
            +
                                                     t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
         | 
| 1030 | 
            +
                                                     pt=p_t, ph=p, pw=p)
         | 
| 1031 | 
            +
             | 
| 1032 | 
            +
                    if return_dict:
         | 
| 1033 | 
            +
                        return Transformer2DModelOutput(sample=hidden_states)
         | 
| 1034 | 
            +
             | 
| 1035 | 
            +
                    return hidden_states,
         | 
    	
        diffusers_helper/pipelines/__pycache__/k_diffusion_hunyuan.cpython-310.pyc
    ADDED
    
    | Binary file (2.88 kB). View file | 
|  | 
    	
        diffusers_helper/pipelines/k_diffusion_hunyuan.py
    ADDED
    
    | @@ -0,0 +1,120 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import math
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc
         | 
| 5 | 
            +
            from diffusers_helper.k_diffusion.wrapper import fm_wrapper
         | 
| 6 | 
            +
            from diffusers_helper.utils import repeat_to_batch_size
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            def flux_time_shift(t, mu=1.15, sigma=1.0):
         | 
| 10 | 
            +
                return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0):
         | 
| 14 | 
            +
                k = (y2 - y1) / (x2 - x1)
         | 
| 15 | 
            +
                b = y1 - k * x1
         | 
| 16 | 
            +
                mu = k * context_length + b
         | 
| 17 | 
            +
                mu = min(mu, math.log(exp_max))
         | 
| 18 | 
            +
                return mu
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            def get_flux_sigmas_from_mu(n, mu):
         | 
| 22 | 
            +
                sigmas = torch.linspace(1, 0, steps=n + 1)
         | 
| 23 | 
            +
                sigmas = flux_time_shift(sigmas, mu=mu)
         | 
| 24 | 
            +
                return sigmas
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            @torch.inference_mode()
         | 
| 28 | 
            +
            def sample_hunyuan(
         | 
| 29 | 
            +
                    transformer,
         | 
| 30 | 
            +
                    sampler='unipc',
         | 
| 31 | 
            +
                    initial_latent=None,
         | 
| 32 | 
            +
                    concat_latent=None,
         | 
| 33 | 
            +
                    strength=1.0,
         | 
| 34 | 
            +
                    width=512,
         | 
| 35 | 
            +
                    height=512,
         | 
| 36 | 
            +
                    frames=16,
         | 
| 37 | 
            +
                    real_guidance_scale=1.0,
         | 
| 38 | 
            +
                    distilled_guidance_scale=6.0,
         | 
| 39 | 
            +
                    guidance_rescale=0.0,
         | 
| 40 | 
            +
                    shift=None,
         | 
| 41 | 
            +
                    num_inference_steps=25,
         | 
| 42 | 
            +
                    batch_size=None,
         | 
| 43 | 
            +
                    generator=None,
         | 
| 44 | 
            +
                    prompt_embeds=None,
         | 
| 45 | 
            +
                    prompt_embeds_mask=None,
         | 
| 46 | 
            +
                    prompt_poolers=None,
         | 
| 47 | 
            +
                    negative_prompt_embeds=None,
         | 
| 48 | 
            +
                    negative_prompt_embeds_mask=None,
         | 
| 49 | 
            +
                    negative_prompt_poolers=None,
         | 
| 50 | 
            +
                    dtype=torch.bfloat16,
         | 
| 51 | 
            +
                    device=None,
         | 
| 52 | 
            +
                    negative_kwargs=None,
         | 
| 53 | 
            +
                    callback=None,
         | 
| 54 | 
            +
                    **kwargs,
         | 
| 55 | 
            +
            ):
         | 
| 56 | 
            +
                device = device or transformer.device
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                if batch_size is None:
         | 
| 59 | 
            +
                    batch_size = int(prompt_embeds.shape[0])
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                latents = torch.randn((batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device).to(device=device, dtype=torch.float32)
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                B, C, T, H, W = latents.shape
         | 
| 64 | 
            +
                seq_length = T * H * W // 4
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                if shift is None:
         | 
| 67 | 
            +
                    mu = calculate_flux_mu(seq_length, exp_max=7.0)
         | 
| 68 | 
            +
                else:
         | 
| 69 | 
            +
                    mu = math.log(shift)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device)
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                k_model = fm_wrapper(transformer)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                if initial_latent is not None:
         | 
| 76 | 
            +
                    sigmas = sigmas * strength
         | 
| 77 | 
            +
                    first_sigma = sigmas[0].to(device=device, dtype=torch.float32)
         | 
| 78 | 
            +
                    initial_latent = initial_latent.to(device=device, dtype=torch.float32)
         | 
| 79 | 
            +
                    latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                if concat_latent is not None:
         | 
| 82 | 
            +
                    concat_latent = concat_latent.to(latents)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size)
         | 
| 87 | 
            +
                prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size)
         | 
| 88 | 
            +
                prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size)
         | 
| 89 | 
            +
                negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size)
         | 
| 90 | 
            +
                negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size)
         | 
| 91 | 
            +
                negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size)
         | 
| 92 | 
            +
                concat_latent = repeat_to_batch_size(concat_latent, batch_size)
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                sampler_kwargs = dict(
         | 
| 95 | 
            +
                    dtype=dtype,
         | 
| 96 | 
            +
                    cfg_scale=real_guidance_scale,
         | 
| 97 | 
            +
                    cfg_rescale=guidance_rescale,
         | 
| 98 | 
            +
                    concat_latent=concat_latent,
         | 
| 99 | 
            +
                    positive=dict(
         | 
| 100 | 
            +
                        pooled_projections=prompt_poolers,
         | 
| 101 | 
            +
                        encoder_hidden_states=prompt_embeds,
         | 
| 102 | 
            +
                        encoder_attention_mask=prompt_embeds_mask,
         | 
| 103 | 
            +
                        guidance=distilled_guidance,
         | 
| 104 | 
            +
                        **kwargs,
         | 
| 105 | 
            +
                    ),
         | 
| 106 | 
            +
                    negative=dict(
         | 
| 107 | 
            +
                        pooled_projections=negative_prompt_poolers,
         | 
| 108 | 
            +
                        encoder_hidden_states=negative_prompt_embeds,
         | 
| 109 | 
            +
                        encoder_attention_mask=negative_prompt_embeds_mask,
         | 
| 110 | 
            +
                        guidance=distilled_guidance,
         | 
| 111 | 
            +
                        **(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}),
         | 
| 112 | 
            +
                    )
         | 
| 113 | 
            +
                )
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                if sampler == 'unipc':
         | 
| 116 | 
            +
                    results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback)
         | 
| 117 | 
            +
                else:
         | 
| 118 | 
            +
                    raise NotImplementedError(f'Sampler {sampler} is not supported.')
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                return results
         | 
    	
        diffusers_helper/thread_utils.py
    ADDED
    
    | @@ -0,0 +1,76 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import time
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from threading import Thread, Lock
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            class Listener:
         | 
| 7 | 
            +
                task_queue = []
         | 
| 8 | 
            +
                lock = Lock()
         | 
| 9 | 
            +
                thread = None
         | 
| 10 | 
            +
                
         | 
| 11 | 
            +
                @classmethod
         | 
| 12 | 
            +
                def _process_tasks(cls):
         | 
| 13 | 
            +
                    while True:
         | 
| 14 | 
            +
                        task = None
         | 
| 15 | 
            +
                        with cls.lock:
         | 
| 16 | 
            +
                            if cls.task_queue:
         | 
| 17 | 
            +
                                task = cls.task_queue.pop(0)
         | 
| 18 | 
            +
                                
         | 
| 19 | 
            +
                        if task is None:
         | 
| 20 | 
            +
                            time.sleep(0.001)
         | 
| 21 | 
            +
                            continue
         | 
| 22 | 
            +
                            
         | 
| 23 | 
            +
                        func, args, kwargs = task
         | 
| 24 | 
            +
                        try:
         | 
| 25 | 
            +
                            func(*args, **kwargs)
         | 
| 26 | 
            +
                        except Exception as e:
         | 
| 27 | 
            +
                            print(f"Error in listener thread: {e}")
         | 
| 28 | 
            +
                
         | 
| 29 | 
            +
                @classmethod
         | 
| 30 | 
            +
                def add_task(cls, func, *args, **kwargs):
         | 
| 31 | 
            +
                    with cls.lock:
         | 
| 32 | 
            +
                        cls.task_queue.append((func, args, kwargs))
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    if cls.thread is None:
         | 
| 35 | 
            +
                        cls.thread = Thread(target=cls._process_tasks, daemon=True)
         | 
| 36 | 
            +
                        cls.thread.start()
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
            def async_run(func, *args, **kwargs):
         | 
| 40 | 
            +
                Listener.add_task(func, *args, **kwargs)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            class FIFOQueue:
         | 
| 44 | 
            +
                def __init__(self):
         | 
| 45 | 
            +
                    self.queue = []
         | 
| 46 | 
            +
                    self.lock = Lock()
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                def push(self, item):
         | 
| 49 | 
            +
                    with self.lock:
         | 
| 50 | 
            +
                        self.queue.append(item)
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                def pop(self):
         | 
| 53 | 
            +
                    with self.lock:
         | 
| 54 | 
            +
                        if self.queue:
         | 
| 55 | 
            +
                            return self.queue.pop(0)
         | 
| 56 | 
            +
                        return None
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                def top(self):
         | 
| 59 | 
            +
                    with self.lock:
         | 
| 60 | 
            +
                        if self.queue:
         | 
| 61 | 
            +
                            return self.queue[0]
         | 
| 62 | 
            +
                        return None
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                def next(self):
         | 
| 65 | 
            +
                    while True:
         | 
| 66 | 
            +
                        with self.lock:
         | 
| 67 | 
            +
                            if self.queue:
         | 
| 68 | 
            +
                                return self.queue.pop(0)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                        time.sleep(0.001)
         | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
            class AsyncStream:
         | 
| 74 | 
            +
                def __init__(self):
         | 
| 75 | 
            +
                    self.input_queue = FIFOQueue()
         | 
| 76 | 
            +
                    self.output_queue = FIFOQueue()
         | 
    	
        diffusers_helper/utils.py
    ADDED
    
    | @@ -0,0 +1,613 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import cv2
         | 
| 3 | 
            +
            import json
         | 
| 4 | 
            +
            import random
         | 
| 5 | 
            +
            import glob
         | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import einops
         | 
| 8 | 
            +
            import numpy as np
         | 
| 9 | 
            +
            import datetime
         | 
| 10 | 
            +
            import torchvision
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import safetensors.torch as sf
         | 
| 13 | 
            +
            from PIL import Image
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            def min_resize(x, m):
         | 
| 17 | 
            +
                if x.shape[0] < x.shape[1]:
         | 
| 18 | 
            +
                    s0 = m
         | 
| 19 | 
            +
                    s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
         | 
| 20 | 
            +
                else:
         | 
| 21 | 
            +
                    s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
         | 
| 22 | 
            +
                    s1 = m
         | 
| 23 | 
            +
                new_max = max(s1, s0)
         | 
| 24 | 
            +
                raw_max = max(x.shape[0], x.shape[1])
         | 
| 25 | 
            +
                if new_max < raw_max:
         | 
| 26 | 
            +
                    interpolation = cv2.INTER_AREA
         | 
| 27 | 
            +
                else:
         | 
| 28 | 
            +
                    interpolation = cv2.INTER_LANCZOS4
         | 
| 29 | 
            +
                y = cv2.resize(x, (s1, s0), interpolation=interpolation)
         | 
| 30 | 
            +
                return y
         | 
| 31 | 
            +
             | 
| 32 | 
            +
             | 
| 33 | 
            +
            def d_resize(x, y):
         | 
| 34 | 
            +
                H, W, C = y.shape
         | 
| 35 | 
            +
                new_min = min(H, W)
         | 
| 36 | 
            +
                raw_min = min(x.shape[0], x.shape[1])
         | 
| 37 | 
            +
                if new_min < raw_min:
         | 
| 38 | 
            +
                    interpolation = cv2.INTER_AREA
         | 
| 39 | 
            +
                else:
         | 
| 40 | 
            +
                    interpolation = cv2.INTER_LANCZOS4
         | 
| 41 | 
            +
                y = cv2.resize(x, (W, H), interpolation=interpolation)
         | 
| 42 | 
            +
                return y
         | 
| 43 | 
            +
             | 
| 44 | 
            +
             | 
| 45 | 
            +
            def resize_and_center_crop(image, target_width, target_height):
         | 
| 46 | 
            +
                if target_height == image.shape[0] and target_width == image.shape[1]:
         | 
| 47 | 
            +
                    return image
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                pil_image = Image.fromarray(image)
         | 
| 50 | 
            +
                original_width, original_height = pil_image.size
         | 
| 51 | 
            +
                scale_factor = max(target_width / original_width, target_height / original_height)
         | 
| 52 | 
            +
                resized_width = int(round(original_width * scale_factor))
         | 
| 53 | 
            +
                resized_height = int(round(original_height * scale_factor))
         | 
| 54 | 
            +
                resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
         | 
| 55 | 
            +
                left = (resized_width - target_width) / 2
         | 
| 56 | 
            +
                top = (resized_height - target_height) / 2
         | 
| 57 | 
            +
                right = (resized_width + target_width) / 2
         | 
| 58 | 
            +
                bottom = (resized_height + target_height) / 2
         | 
| 59 | 
            +
                cropped_image = resized_image.crop((left, top, right, bottom))
         | 
| 60 | 
            +
                return np.array(cropped_image)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
             | 
| 63 | 
            +
            def resize_and_center_crop_pytorch(image, target_width, target_height):
         | 
| 64 | 
            +
                B, C, H, W = image.shape
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                if H == target_height and W == target_width:
         | 
| 67 | 
            +
                    return image
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                scale_factor = max(target_width / W, target_height / H)
         | 
| 70 | 
            +
                resized_width = int(round(W * scale_factor))
         | 
| 71 | 
            +
                resized_height = int(round(H * scale_factor))
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                top = (resized_height - target_height) // 2
         | 
| 76 | 
            +
                left = (resized_width - target_width) // 2
         | 
| 77 | 
            +
                cropped = resized[:, :, top:top + target_height, left:left + target_width]
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                return cropped
         | 
| 80 | 
            +
             | 
| 81 | 
            +
             | 
| 82 | 
            +
            def resize_without_crop(image, target_width, target_height):
         | 
| 83 | 
            +
                if target_height == image.shape[0] and target_width == image.shape[1]:
         | 
| 84 | 
            +
                    return image
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                pil_image = Image.fromarray(image)
         | 
| 87 | 
            +
                resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
         | 
| 88 | 
            +
                return np.array(resized_image)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            def just_crop(image, w, h):
         | 
| 92 | 
            +
                if h == image.shape[0] and w == image.shape[1]:
         | 
| 93 | 
            +
                    return image
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                original_height, original_width = image.shape[:2]
         | 
| 96 | 
            +
                k = min(original_height / h, original_width / w)
         | 
| 97 | 
            +
                new_width = int(round(w * k))
         | 
| 98 | 
            +
                new_height = int(round(h * k))
         | 
| 99 | 
            +
                x_start = (original_width - new_width) // 2
         | 
| 100 | 
            +
                y_start = (original_height - new_height) // 2
         | 
| 101 | 
            +
                cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width]
         | 
| 102 | 
            +
                return cropped_image
         | 
| 103 | 
            +
             | 
| 104 | 
            +
             | 
| 105 | 
            +
            def write_to_json(data, file_path):
         | 
| 106 | 
            +
                temp_file_path = file_path + ".tmp"
         | 
| 107 | 
            +
                with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
         | 
| 108 | 
            +
                    json.dump(data, temp_file, indent=4)
         | 
| 109 | 
            +
                os.replace(temp_file_path, file_path)
         | 
| 110 | 
            +
                return
         | 
| 111 | 
            +
             | 
| 112 | 
            +
             | 
| 113 | 
            +
            def read_from_json(file_path):
         | 
| 114 | 
            +
                with open(file_path, 'rt', encoding='utf-8') as file:
         | 
| 115 | 
            +
                    data = json.load(file)
         | 
| 116 | 
            +
                return data
         | 
| 117 | 
            +
             | 
| 118 | 
            +
             | 
| 119 | 
            +
            def get_active_parameters(m):
         | 
| 120 | 
            +
                return {k: v for k, v in m.named_parameters() if v.requires_grad}
         | 
| 121 | 
            +
             | 
| 122 | 
            +
             | 
| 123 | 
            +
            def cast_training_params(m, dtype=torch.float32):
         | 
| 124 | 
            +
                result = {}
         | 
| 125 | 
            +
                for n, param in m.named_parameters():
         | 
| 126 | 
            +
                    if param.requires_grad:
         | 
| 127 | 
            +
                        param.data = param.to(dtype)
         | 
| 128 | 
            +
                        result[n] = param
         | 
| 129 | 
            +
                return result
         | 
| 130 | 
            +
             | 
| 131 | 
            +
             | 
| 132 | 
            +
            def separate_lora_AB(parameters, B_patterns=None):
         | 
| 133 | 
            +
                parameters_normal = {}
         | 
| 134 | 
            +
                parameters_B = {}
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                if B_patterns is None:
         | 
| 137 | 
            +
                    B_patterns = ['.lora_B.', '__zero__']
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                for k, v in parameters.items():
         | 
| 140 | 
            +
                    if any(B_pattern in k for B_pattern in B_patterns):
         | 
| 141 | 
            +
                        parameters_B[k] = v
         | 
| 142 | 
            +
                    else:
         | 
| 143 | 
            +
                        parameters_normal[k] = v
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                return parameters_normal, parameters_B
         | 
| 146 | 
            +
             | 
| 147 | 
            +
             | 
| 148 | 
            +
            def set_attr_recursive(obj, attr, value):
         | 
| 149 | 
            +
                attrs = attr.split(".")
         | 
| 150 | 
            +
                for name in attrs[:-1]:
         | 
| 151 | 
            +
                    obj = getattr(obj, name)
         | 
| 152 | 
            +
                setattr(obj, attrs[-1], value)
         | 
| 153 | 
            +
                return
         | 
| 154 | 
            +
             | 
| 155 | 
            +
             | 
| 156 | 
            +
            def print_tensor_list_size(tensors):
         | 
| 157 | 
            +
                total_size = 0
         | 
| 158 | 
            +
                total_elements = 0
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                if isinstance(tensors, dict):
         | 
| 161 | 
            +
                    tensors = tensors.values()
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                for tensor in tensors:
         | 
| 164 | 
            +
                    total_size += tensor.nelement() * tensor.element_size()
         | 
| 165 | 
            +
                    total_elements += tensor.nelement()
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                total_size_MB = total_size / (1024 ** 2)
         | 
| 168 | 
            +
                total_elements_B = total_elements / 1e9
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                print(f"Total number of tensors: {len(tensors)}")
         | 
| 171 | 
            +
                print(f"Total size of tensors: {total_size_MB:.2f} MB")
         | 
| 172 | 
            +
                print(f"Total number of parameters: {total_elements_B:.3f} billion")
         | 
| 173 | 
            +
                return
         | 
| 174 | 
            +
             | 
| 175 | 
            +
             | 
| 176 | 
            +
            @torch.no_grad()
         | 
| 177 | 
            +
            def batch_mixture(a, b=None, probability_a=0.5, mask_a=None):
         | 
| 178 | 
            +
                batch_size = a.size(0)
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                if b is None:
         | 
| 181 | 
            +
                    b = torch.zeros_like(a)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                if mask_a is None:
         | 
| 184 | 
            +
                    mask_a = torch.rand(batch_size) < probability_a
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                mask_a = mask_a.to(a.device)
         | 
| 187 | 
            +
                mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
         | 
| 188 | 
            +
                result = torch.where(mask_a, a, b)
         | 
| 189 | 
            +
                return result
         | 
| 190 | 
            +
             | 
| 191 | 
            +
             | 
| 192 | 
            +
            @torch.no_grad()
         | 
| 193 | 
            +
            def zero_module(module):
         | 
| 194 | 
            +
                for p in module.parameters():
         | 
| 195 | 
            +
                    p.detach().zero_()
         | 
| 196 | 
            +
                return module
         | 
| 197 | 
            +
             | 
| 198 | 
            +
             | 
| 199 | 
            +
            @torch.no_grad()
         | 
| 200 | 
            +
            def supress_lower_channels(m, k, alpha=0.01):
         | 
| 201 | 
            +
                data = m.weight.data.clone()
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                assert int(data.shape[1]) >= k
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                data[:, :k] = data[:, :k] * alpha
         | 
| 206 | 
            +
                m.weight.data = data.contiguous().clone()
         | 
| 207 | 
            +
                return m
         | 
| 208 | 
            +
             | 
| 209 | 
            +
             | 
| 210 | 
            +
            def freeze_module(m):
         | 
| 211 | 
            +
                if not hasattr(m, '_forward_inside_frozen_module'):
         | 
| 212 | 
            +
                    m._forward_inside_frozen_module = m.forward
         | 
| 213 | 
            +
                m.requires_grad_(False)
         | 
| 214 | 
            +
                m.forward = torch.no_grad()(m.forward)
         | 
| 215 | 
            +
                return m
         | 
| 216 | 
            +
             | 
| 217 | 
            +
             | 
| 218 | 
            +
            def get_latest_safetensors(folder_path):
         | 
| 219 | 
            +
                safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors'))
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                if not safetensors_files:
         | 
| 222 | 
            +
                    raise ValueError('No file to resume!')
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                latest_file = max(safetensors_files, key=os.path.getmtime)
         | 
| 225 | 
            +
                latest_file = os.path.abspath(os.path.realpath(latest_file))
         | 
| 226 | 
            +
                return latest_file
         | 
| 227 | 
            +
             | 
| 228 | 
            +
             | 
| 229 | 
            +
            def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
         | 
| 230 | 
            +
                tags = tags_str.split(', ')
         | 
| 231 | 
            +
                tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
         | 
| 232 | 
            +
                prompt = ', '.join(tags)
         | 
| 233 | 
            +
                return prompt
         | 
| 234 | 
            +
             | 
| 235 | 
            +
             | 
| 236 | 
            +
            def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0):
         | 
| 237 | 
            +
                numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma)
         | 
| 238 | 
            +
                if round_to_int:
         | 
| 239 | 
            +
                    numbers = np.round(numbers).astype(int)
         | 
| 240 | 
            +
                return numbers.tolist()
         | 
| 241 | 
            +
             | 
| 242 | 
            +
             | 
| 243 | 
            +
            def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False):
         | 
| 244 | 
            +
                edges = np.linspace(0, 1, n + 1)
         | 
| 245 | 
            +
                points = np.random.uniform(edges[:-1], edges[1:])
         | 
| 246 | 
            +
                numbers = inclusive + (exclusive - inclusive) * points
         | 
| 247 | 
            +
                if round_to_int:
         | 
| 248 | 
            +
                    numbers = np.round(numbers).astype(int)
         | 
| 249 | 
            +
                return numbers.tolist()
         | 
| 250 | 
            +
             | 
| 251 | 
            +
             | 
| 252 | 
            +
            def soft_append_bcthw(history, current, overlap=0):
         | 
| 253 | 
            +
                if overlap <= 0:
         | 
| 254 | 
            +
                    return torch.cat([history, current], dim=2)
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})"
         | 
| 257 | 
            +
                assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})"
         | 
| 258 | 
            +
                
         | 
| 259 | 
            +
                weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
         | 
| 260 | 
            +
                blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
         | 
| 261 | 
            +
                output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                return output.to(history)
         | 
| 264 | 
            +
             | 
| 265 | 
            +
             | 
| 266 | 
            +
            def save_bcthw_as_mp4(x, output_filename, fps=10, crf=0):
         | 
| 267 | 
            +
                b, c, t, h, w = x.shape
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                per_row = b
         | 
| 270 | 
            +
                for p in [6, 5, 4, 3, 2]:
         | 
| 271 | 
            +
                    if b % p == 0:
         | 
| 272 | 
            +
                        per_row = p
         | 
| 273 | 
            +
                        break
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
         | 
| 276 | 
            +
                x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
         | 
| 277 | 
            +
                x = x.detach().cpu().to(torch.uint8)
         | 
| 278 | 
            +
                x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
         | 
| 279 | 
            +
                torchvision.io.write_video(output_filename, x, fps=fps, video_codec='libx264', options={'crf': str(int(crf))})
         | 
| 280 | 
            +
                return x
         | 
| 281 | 
            +
             | 
| 282 | 
            +
             | 
| 283 | 
            +
            def save_bcthw_as_png(x, output_filename):
         | 
| 284 | 
            +
                os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
         | 
| 285 | 
            +
                x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
         | 
| 286 | 
            +
                x = x.detach().cpu().to(torch.uint8)
         | 
| 287 | 
            +
                x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
         | 
| 288 | 
            +
                torchvision.io.write_png(x, output_filename)
         | 
| 289 | 
            +
                return output_filename
         | 
| 290 | 
            +
             | 
| 291 | 
            +
             | 
| 292 | 
            +
            def save_bchw_as_png(x, output_filename):
         | 
| 293 | 
            +
                os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
         | 
| 294 | 
            +
                x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
         | 
| 295 | 
            +
                x = x.detach().cpu().to(torch.uint8)
         | 
| 296 | 
            +
                x = einops.rearrange(x, 'b c h w -> c h (b w)')
         | 
| 297 | 
            +
                torchvision.io.write_png(x, output_filename)
         | 
| 298 | 
            +
                return output_filename
         | 
| 299 | 
            +
             | 
| 300 | 
            +
             | 
| 301 | 
            +
            def add_tensors_with_padding(tensor1, tensor2):
         | 
| 302 | 
            +
                if tensor1.shape == tensor2.shape:
         | 
| 303 | 
            +
                    return tensor1 + tensor2
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                shape1 = tensor1.shape
         | 
| 306 | 
            +
                shape2 = tensor2.shape
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                padded_tensor1 = torch.zeros(new_shape)
         | 
| 311 | 
            +
                padded_tensor2 = torch.zeros(new_shape)
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
         | 
| 314 | 
            +
                padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                result = padded_tensor1 + padded_tensor2
         | 
| 317 | 
            +
                return result
         | 
| 318 | 
            +
             | 
| 319 | 
            +
             | 
| 320 | 
            +
            def print_free_mem():
         | 
| 321 | 
            +
                torch.cuda.empty_cache()
         | 
| 322 | 
            +
                free_mem, total_mem = torch.cuda.mem_get_info(0)
         | 
| 323 | 
            +
                free_mem_mb = free_mem / (1024 ** 2)
         | 
| 324 | 
            +
                total_mem_mb = total_mem / (1024 ** 2)
         | 
| 325 | 
            +
                print(f"Free memory: {free_mem_mb:.2f} MB")
         | 
| 326 | 
            +
                print(f"Total memory: {total_mem_mb:.2f} MB")
         | 
| 327 | 
            +
                return
         | 
| 328 | 
            +
             | 
| 329 | 
            +
             | 
| 330 | 
            +
            def print_gpu_parameters(device, state_dict, log_count=1):
         | 
| 331 | 
            +
                summary = {"device": device, "keys_count": len(state_dict)}
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                logged_params = {}
         | 
| 334 | 
            +
                for i, (key, tensor) in enumerate(state_dict.items()):
         | 
| 335 | 
            +
                    if i >= log_count:
         | 
| 336 | 
            +
                        break
         | 
| 337 | 
            +
                    logged_params[key] = tensor.flatten()[:3].tolist()
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                summary["params"] = logged_params
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                print(str(summary))
         | 
| 342 | 
            +
                return
         | 
| 343 | 
            +
             | 
| 344 | 
            +
             | 
| 345 | 
            +
            def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18):
         | 
| 346 | 
            +
                from PIL import Image, ImageDraw, ImageFont
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                txt = Image.new("RGB", (width, height), color="white")
         | 
| 349 | 
            +
                draw = ImageDraw.Draw(txt)
         | 
| 350 | 
            +
                font = ImageFont.truetype(font_path, size=size)
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                if text == '':
         | 
| 353 | 
            +
                    return np.array(txt)
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                # Split text into lines that fit within the image width
         | 
| 356 | 
            +
                lines = []
         | 
| 357 | 
            +
                words = text.split()
         | 
| 358 | 
            +
                current_line = words[0]
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                for word in words[1:]:
         | 
| 361 | 
            +
                    line_with_word = f"{current_line} {word}"
         | 
| 362 | 
            +
                    if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width:
         | 
| 363 | 
            +
                        current_line = line_with_word
         | 
| 364 | 
            +
                    else:
         | 
| 365 | 
            +
                        lines.append(current_line)
         | 
| 366 | 
            +
                        current_line = word
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                lines.append(current_line)
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                # Draw the text line by line
         | 
| 371 | 
            +
                y = 0
         | 
| 372 | 
            +
                line_height = draw.textbbox((0, 0), "A", font=font)[3]
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                for line in lines:
         | 
| 375 | 
            +
                    if y + line_height > height:
         | 
| 376 | 
            +
                        break  # stop drawing if the next line will be outside the image
         | 
| 377 | 
            +
                    draw.text((0, y), line, fill="black", font=font)
         | 
| 378 | 
            +
                    y += line_height
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                return np.array(txt)
         | 
| 381 | 
            +
             | 
| 382 | 
            +
             | 
| 383 | 
            +
            def blue_mark(x):
         | 
| 384 | 
            +
                x = x.copy()
         | 
| 385 | 
            +
                c = x[:, :, 2]
         | 
| 386 | 
            +
                b = cv2.blur(c, (9, 9))
         | 
| 387 | 
            +
                x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1)
         | 
| 388 | 
            +
                return x
         | 
| 389 | 
            +
             | 
| 390 | 
            +
             | 
| 391 | 
            +
            def green_mark(x):
         | 
| 392 | 
            +
                x = x.copy()
         | 
| 393 | 
            +
                x[:, :, 2] = -1
         | 
| 394 | 
            +
                x[:, :, 0] = -1
         | 
| 395 | 
            +
                return x
         | 
| 396 | 
            +
             | 
| 397 | 
            +
             | 
| 398 | 
            +
            def frame_mark(x):
         | 
| 399 | 
            +
                x = x.copy()
         | 
| 400 | 
            +
                x[:64] = -1
         | 
| 401 | 
            +
                x[-64:] = -1
         | 
| 402 | 
            +
                x[:, :8] = 1
         | 
| 403 | 
            +
                x[:, -8:] = 1
         | 
| 404 | 
            +
                return x
         | 
| 405 | 
            +
             | 
| 406 | 
            +
             | 
| 407 | 
            +
            @torch.inference_mode()
         | 
| 408 | 
            +
            def pytorch2numpy(imgs):
         | 
| 409 | 
            +
                results = []
         | 
| 410 | 
            +
                for x in imgs:
         | 
| 411 | 
            +
                    y = x.movedim(0, -1)
         | 
| 412 | 
            +
                    y = y * 127.5 + 127.5
         | 
| 413 | 
            +
                    y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
         | 
| 414 | 
            +
                    results.append(y)
         | 
| 415 | 
            +
                return results
         | 
| 416 | 
            +
             | 
| 417 | 
            +
             | 
| 418 | 
            +
            @torch.inference_mode()
         | 
| 419 | 
            +
            def numpy2pytorch(imgs):
         | 
| 420 | 
            +
                h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
         | 
| 421 | 
            +
                h = h.movedim(-1, 1)
         | 
| 422 | 
            +
                return h
         | 
| 423 | 
            +
             | 
| 424 | 
            +
             | 
| 425 | 
            +
            @torch.no_grad()
         | 
| 426 | 
            +
            def duplicate_prefix_to_suffix(x, count, zero_out=False):
         | 
| 427 | 
            +
                if zero_out:
         | 
| 428 | 
            +
                    return torch.cat([x, torch.zeros_like(x[:count])], dim=0)
         | 
| 429 | 
            +
                else:
         | 
| 430 | 
            +
                    return torch.cat([x, x[:count]], dim=0)
         | 
| 431 | 
            +
             | 
| 432 | 
            +
             | 
| 433 | 
            +
            def weighted_mse(a, b, weight):
         | 
| 434 | 
            +
                return torch.mean(weight.float() * (a.float() - b.float()) ** 2)
         | 
| 435 | 
            +
             | 
| 436 | 
            +
             | 
| 437 | 
            +
            def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0):
         | 
| 438 | 
            +
                x = (x - x_min) / (x_max - x_min)
         | 
| 439 | 
            +
                x = max(0.0, min(x, 1.0))
         | 
| 440 | 
            +
                x = x ** sigma
         | 
| 441 | 
            +
                return y_min + x * (y_max - y_min)
         | 
| 442 | 
            +
             | 
| 443 | 
            +
             | 
| 444 | 
            +
            def expand_to_dims(x, target_dims):
         | 
| 445 | 
            +
                return x.view(*x.shape, *([1] * max(0, target_dims - x.dim())))
         | 
| 446 | 
            +
             | 
| 447 | 
            +
             | 
| 448 | 
            +
            def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int):
         | 
| 449 | 
            +
                if tensor is None:
         | 
| 450 | 
            +
                    return None
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                first_dim = tensor.shape[0]
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                if first_dim == batch_size:
         | 
| 455 | 
            +
                    return tensor
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                if batch_size % first_dim != 0:
         | 
| 458 | 
            +
                    raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.")
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                repeat_times = batch_size // first_dim
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1))
         | 
| 463 | 
            +
             | 
| 464 | 
            +
             | 
| 465 | 
            +
            def dim5(x):
         | 
| 466 | 
            +
                return expand_to_dims(x, 5)
         | 
| 467 | 
            +
             | 
| 468 | 
            +
             | 
| 469 | 
            +
            def dim4(x):
         | 
| 470 | 
            +
                return expand_to_dims(x, 4)
         | 
| 471 | 
            +
             | 
| 472 | 
            +
             | 
| 473 | 
            +
            def dim3(x):
         | 
| 474 | 
            +
                return expand_to_dims(x, 3)
         | 
| 475 | 
            +
             | 
| 476 | 
            +
             | 
| 477 | 
            +
            def crop_or_pad_yield_mask(x, length):
         | 
| 478 | 
            +
                B, F, C = x.shape
         | 
| 479 | 
            +
                device = x.device
         | 
| 480 | 
            +
                dtype = x.dtype
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                if F < length:
         | 
| 483 | 
            +
                    y = torch.zeros((B, length, C), dtype=dtype, device=device)
         | 
| 484 | 
            +
                    mask = torch.zeros((B, length), dtype=torch.bool, device=device)
         | 
| 485 | 
            +
                    y[:, :F, :] = x
         | 
| 486 | 
            +
                    mask[:, :F] = True
         | 
| 487 | 
            +
                    return y, mask
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device)
         | 
| 490 | 
            +
             | 
| 491 | 
            +
             | 
| 492 | 
            +
            def extend_dim(x, dim, minimal_length, zero_pad=False):
         | 
| 493 | 
            +
                original_length = int(x.shape[dim])
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                if original_length >= minimal_length:
         | 
| 496 | 
            +
                    return x
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                if zero_pad:
         | 
| 499 | 
            +
                    padding_shape = list(x.shape)
         | 
| 500 | 
            +
                    padding_shape[dim] = minimal_length - original_length
         | 
| 501 | 
            +
                    padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device)
         | 
| 502 | 
            +
                else:
         | 
| 503 | 
            +
                    idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1)
         | 
| 504 | 
            +
                    last_element = x[idx]
         | 
| 505 | 
            +
                    padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim)
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                return torch.cat([x, padding], dim=dim)
         | 
| 508 | 
            +
             | 
| 509 | 
            +
             | 
| 510 | 
            +
            def lazy_positional_encoding(t, repeats=None):
         | 
| 511 | 
            +
                if not isinstance(t, list):
         | 
| 512 | 
            +
                    t = [t]
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                from diffusers.models.embeddings import get_timestep_embedding
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                te = torch.tensor(t)
         | 
| 517 | 
            +
                te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0)
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                if repeats is None:
         | 
| 520 | 
            +
                    return te
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                te = te[:, None, :].expand(-1, repeats, -1)
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                return te
         | 
| 525 | 
            +
             | 
| 526 | 
            +
             | 
| 527 | 
            +
            def state_dict_offset_merge(A, B, C=None):
         | 
| 528 | 
            +
                result = {}
         | 
| 529 | 
            +
                keys = A.keys()
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                for key in keys:
         | 
| 532 | 
            +
                    A_value = A[key]
         | 
| 533 | 
            +
                    B_value = B[key].to(A_value)
         | 
| 534 | 
            +
             | 
| 535 | 
            +
                    if C is None:
         | 
| 536 | 
            +
                        result[key] = A_value + B_value
         | 
| 537 | 
            +
                    else:
         | 
| 538 | 
            +
                        C_value = C[key].to(A_value)
         | 
| 539 | 
            +
                        result[key] = A_value + B_value - C_value
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                return result
         | 
| 542 | 
            +
             | 
| 543 | 
            +
             | 
| 544 | 
            +
            def state_dict_weighted_merge(state_dicts, weights):
         | 
| 545 | 
            +
                if len(state_dicts) != len(weights):
         | 
| 546 | 
            +
                    raise ValueError("Number of state dictionaries must match number of weights")
         | 
| 547 | 
            +
             | 
| 548 | 
            +
                if not state_dicts:
         | 
| 549 | 
            +
                    return {}
         | 
| 550 | 
            +
             | 
| 551 | 
            +
                total_weight = sum(weights)
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                if total_weight == 0:
         | 
| 554 | 
            +
                    raise ValueError("Sum of weights cannot be zero")
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                normalized_weights = [w / total_weight for w in weights]
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                keys = state_dicts[0].keys()
         | 
| 559 | 
            +
                result = {}
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                for key in keys:
         | 
| 562 | 
            +
                    result[key] = state_dicts[0][key] * normalized_weights[0]
         | 
| 563 | 
            +
             | 
| 564 | 
            +
                    for i in range(1, len(state_dicts)):
         | 
| 565 | 
            +
                        state_dict_value = state_dicts[i][key].to(result[key])
         | 
| 566 | 
            +
                        result[key] += state_dict_value * normalized_weights[i]
         | 
| 567 | 
            +
             | 
| 568 | 
            +
                return result
         | 
| 569 | 
            +
             | 
| 570 | 
            +
             | 
| 571 | 
            +
            def group_files_by_folder(all_files):
         | 
| 572 | 
            +
                grouped_files = {}
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                for file in all_files:
         | 
| 575 | 
            +
                    folder_name = os.path.basename(os.path.dirname(file))
         | 
| 576 | 
            +
                    if folder_name not in grouped_files:
         | 
| 577 | 
            +
                        grouped_files[folder_name] = []
         | 
| 578 | 
            +
                    grouped_files[folder_name].append(file)
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                list_of_lists = list(grouped_files.values())
         | 
| 581 | 
            +
                return list_of_lists
         | 
| 582 | 
            +
             | 
| 583 | 
            +
             | 
| 584 | 
            +
            def generate_timestamp():
         | 
| 585 | 
            +
                now = datetime.datetime.now()
         | 
| 586 | 
            +
                timestamp = now.strftime('%y%m%d_%H%M%S')
         | 
| 587 | 
            +
                milliseconds = f"{int(now.microsecond / 1000):03d}"
         | 
| 588 | 
            +
                random_number = random.randint(0, 9999)
         | 
| 589 | 
            +
                return f"{timestamp}_{milliseconds}_{random_number}"
         | 
| 590 | 
            +
             | 
| 591 | 
            +
             | 
| 592 | 
            +
            def write_PIL_image_with_png_info(image, metadata, path):
         | 
| 593 | 
            +
                from PIL.PngImagePlugin import PngInfo
         | 
| 594 | 
            +
             | 
| 595 | 
            +
                png_info = PngInfo()
         | 
| 596 | 
            +
                for key, value in metadata.items():
         | 
| 597 | 
            +
                    png_info.add_text(key, value)
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                image.save(path, "PNG", pnginfo=png_info)
         | 
| 600 | 
            +
                return image
         | 
| 601 | 
            +
             | 
| 602 | 
            +
             | 
| 603 | 
            +
            def torch_safe_save(content, path):
         | 
| 604 | 
            +
                torch.save(content, path + '_tmp')
         | 
| 605 | 
            +
                os.replace(path + '_tmp', path)
         | 
| 606 | 
            +
                return path
         | 
| 607 | 
            +
             | 
| 608 | 
            +
             | 
| 609 | 
            +
            def move_optimizer_to_device(optimizer, device):
         | 
| 610 | 
            +
                for state in optimizer.state.values():
         | 
| 611 | 
            +
                    for k, v in state.items():
         | 
| 612 | 
            +
                        if isinstance(v, torch.Tensor):
         | 
| 613 | 
            +
                            state[k] = v.to(device)
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,15 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            accelerate==1.6.0
         | 
| 2 | 
            +
            diffusers==0.33.1
         | 
| 3 | 
            +
            transformers==4.46.2
         | 
| 4 | 
            +
            gradio==5.23.0
         | 
| 5 | 
            +
            sentencepiece==0.2.0
         | 
| 6 | 
            +
            pillow==11.1.0
         | 
| 7 | 
            +
            av==12.1.0
         | 
| 8 | 
            +
            numpy==1.26.2
         | 
| 9 | 
            +
            scipy==1.12.0
         | 
| 10 | 
            +
            requests==2.31.0
         | 
| 11 | 
            +
            torchsde==0.2.6
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            einops
         | 
| 14 | 
            +
            opencv-contrib-python
         | 
| 15 | 
            +
            safetensors
         | 
 
			
