from collections import defaultdict

import json
import os
import joblib
import numpy as np
import torch
import cv2
from tqdm import tqdm
from glob import glob
from natsort import natsorted
import spaces

from lib.pipeline.tools import parse_chunks, parse_chunks_hand_frame
from lib.models.hawor import HAWOR
from lib.eval_utils.custom_utils import cam2world_convert, load_slam_cam
from lib.eval_utils.custom_utils import interpolate_bboxes
from lib.eval_utils.filling_utils import filling_postprocess, filling_preprocess
from lib.vis.renderer import Renderer
from hawor.utils.process import get_mano_faces, run_mano, run_mano_left
from hawor.utils.rotation import angle_axis_to_rotation_matrix, rotation_matrix_to_angle_axis
from infiller.lib.model.network import TransformerModel

def load_hawor(checkpoint_path):
    from pathlib import Path
    from hawor.configs import get_config
    model_cfg = str(Path(checkpoint_path).parent.parent / 'model_config.yaml')
    model_cfg = get_config(model_cfg, update_cachedir=True)

    # Override some config values, to crop bbox correctly
    if (model_cfg.MODEL.BACKBONE.TYPE == 'vit') and ('BBOX_SHAPE' not in model_cfg.MODEL):
        model_cfg.defrost()
        assert model_cfg.MODEL.IMAGE_SIZE == 256, f"MODEL.IMAGE_SIZE ({model_cfg.MODEL.IMAGE_SIZE}) should be 256 for ViT backbone"
        model_cfg.MODEL.BBOX_SHAPE = [192,256]
        model_cfg.freeze()

    model = HAWOR.load_from_checkpoint(checkpoint_path, strict=False, cfg=model_cfg)
    return model, model_cfg


@spaces.GPU(duration=80)
def hawor_motion_estimation(args, start_idx, end_idx, seq_folder):
    model, model_cfg = load_hawor(args.checkpoint)
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    model = model.to(device)
    model.eval()

    file = args.video_path
    video_root = os.path.dirname(file)
    video = os.path.basename(file).split('.')[0]
    img_folder = f"{video_root}/{video}/extracted_images"
    imgfiles = np.array(natsorted(glob(f'{img_folder}/*.jpg')))

    tracks = np.load(f'{seq_folder}/tracks_{start_idx}_{end_idx}/model_tracks.npy', allow_pickle=True).item()
    img_focal = args.img_focal
    if img_focal is None:
        try:
            with open(os.path.join(seq_folder, 'est_focal.txt'), 'r') as file:
                img_focal = file.read()
                img_focal = float(img_focal)
        except:
            img_focal = 600
            print(f'No focal length provided, use default {img_focal}')
            with open(os.path.join(seq_folder, 'est_focal.txt'), 'w') as file:
                file.write(str(img_focal))
    
    tid = np.array([tr for tr in tracks])

    if os.path.exists(f'{seq_folder}/tracks_{start_idx}_{end_idx}/frame_chunks_all.npy'):
        print("skip hawor motion estimation")
        frame_chunks_all = joblib.load(f'{seq_folder}/tracks_{start_idx}_{end_idx}/frame_chunks_all.npy')
        return frame_chunks_all, img_focal

    print(f'Running hawor on {video} ...')

    left_trk = []
    right_trk = []
    for k, idx in enumerate(tid):
        trk = tracks[idx]

        valid = np.array([t['det'] for t in trk])        
        is_right = np.concatenate([t['det_handedness'] for t in trk])[valid]
        
        if is_right.sum() / len(is_right) < 0.5:
            left_trk.extend(trk)
        else:
            right_trk.extend(trk)
    left_trk = sorted(left_trk, key=lambda x: x['frame'])
    right_trk = sorted(right_trk, key=lambda x: x['frame'])
    final_tracks = {
        0: left_trk,
        1: right_trk
    }
    tid = [0, 1]

    img = cv2.imread(imgfiles[0])
    img_center = [img.shape[1] / 2, img.shape[0] / 2]# w/2, h/2  
    H, W = img.shape[:2]
    model_masks = np.zeros((len(imgfiles), H, W))

    bin_size = 128
    max_faces_per_bin = 20000
    renderer = Renderer(img.shape[1], img.shape[0], img_focal, 'cuda', 
                    bin_size=bin_size, max_faces_per_bin=max_faces_per_bin)
    # get faces
    faces = get_mano_faces()
    faces_new = np.array([[92, 38, 234],
            [234, 38, 239],
            [38, 122, 239],
            [239, 122, 279],
            [122, 118, 279],
            [279, 118, 215],
            [118, 117, 215],
            [215, 117, 214],
            [117, 119, 214],
            [214, 119, 121],
            [119, 120, 121],
            [121, 120, 78],
            [120, 108, 78],
            [78, 108, 79]])
    faces_right = np.concatenate([faces, faces_new], axis=0)
    faces_left = faces_right[:,[0,2,1]]

    frame_chunks_all = defaultdict(list)
    for idx in tid:
        print(f"tracklet {idx}:")
        trk = final_tracks[idx]

        # interp bboxes
        valid = np.array([t['det'] for t in trk])
        if valid.sum() < 2:
            continue
        boxes = np.concatenate([t['det_box'] for t in trk])
        non_zero_indices = np.where(np.any(boxes != 0, axis=1))[0]
        first_non_zero = non_zero_indices[0]
        last_non_zero = non_zero_indices[-1]
        boxes[first_non_zero:last_non_zero+1] = interpolate_bboxes(boxes[first_non_zero:last_non_zero+1])
        valid[first_non_zero:last_non_zero+1] = True


        boxes = boxes[first_non_zero:last_non_zero+1]
        is_right = np.concatenate([t['det_handedness'] for t in trk])[valid]
        frame = np.array([t['frame'] for t in trk])[valid]
        
        if is_right.sum() / len(is_right) < 0.5:
            is_right = np.zeros((len(boxes), 1))
        else:
            is_right = np.ones((len(boxes), 1))

        frame_chunks, boxes_chunks = parse_chunks(frame, boxes, min_len=1)
        frame_chunks_all[idx] = frame_chunks

        if len(frame_chunks) == 0:
            continue

        for frame_ck, boxes_ck in zip(frame_chunks, boxes_chunks):
            print(f"inference from frame {frame_ck[0]} to {frame_ck[-1]}")
            img_ck = imgfiles[frame_ck]
            if is_right[0] > 0:
                do_flip = False
            else:
                do_flip = True
                
            results = model.inference(img_ck, boxes_ck, img_focal=img_focal, img_center=img_center, do_flip=do_flip)

            data_out = {
                "init_root_orient": results["pred_rotmat"][None, :, 0], # (B, T, 3, 3)
                "init_hand_pose": results["pred_rotmat"][None, :, 1:], # (B, T, 15, 3, 3)
                "init_trans": results["pred_trans"][None, :, 0],  # (B, T, 3)
                "init_betas": results["pred_shape"][None, :]  # (B, T, 10)
            }

            # flip left hand
            init_root = rotation_matrix_to_angle_axis(data_out["init_root_orient"])
            init_hand_pose = rotation_matrix_to_angle_axis(data_out["init_hand_pose"])
            if do_flip:
                init_root[..., 1] *= -1
                init_root[..., 2] *= -1
                init_hand_pose[..., 1] *= -1
                init_hand_pose[..., 2] *= -1
            data_out["init_root_orient"] = angle_axis_to_rotation_matrix(init_root)
            data_out["init_hand_pose"] = angle_axis_to_rotation_matrix(init_hand_pose)

            # save camera-space results
            pred_dict={
                k:v.tolist() for k, v in data_out.items()
            }
            pred_path = os.path.join(seq_folder, 'cam_space', str(idx), f"{frame_ck[0]}_{frame_ck[-1]}.json")
            if not os.path.exists(os.path.join(seq_folder, 'cam_space', str(idx))):
                os.makedirs(os.path.join(seq_folder, 'cam_space', str(idx)))
            with open(pred_path, "w") as f:
                json.dump(pred_dict, f, indent=1)


            # get hand mask
            data_out["init_root_orient"] = rotation_matrix_to_angle_axis(data_out["init_root_orient"])
            data_out["init_hand_pose"] = rotation_matrix_to_angle_axis(data_out["init_hand_pose"])
            if do_flip: # left
                outputs = run_mano_left(data_out["init_trans"], data_out["init_root_orient"], data_out["init_hand_pose"], betas=data_out["init_betas"])
            else: # right
                outputs = run_mano(data_out["init_trans"], data_out["init_root_orient"], data_out["init_hand_pose"], betas=data_out["init_betas"])
            
            vertices = outputs["vertices"][0].cpu()  # (T, N, 3)
            for img_i, _ in enumerate(img_ck):
                if do_flip:
                    faces = torch.from_numpy(faces_left).cuda()
                else:
                    faces = torch.from_numpy(faces_right).cuda()
                cam_R = torch.eye(3).unsqueeze(0).cuda()
                cam_T = torch.zeros(1, 3).cuda()
                cameras, lights = renderer.create_camera_from_cv(cam_R, cam_T)
                verts_color = torch.tensor([0, 0, 255, 255]) / 255
                vertices_i = vertices[[img_i]]
                rend, mask = renderer.render_multiple(vertices_i.unsqueeze(0).cuda(), faces, verts_color.unsqueeze(0).cuda(), cameras, lights)
                
                model_masks[frame_ck[img_i]] += mask
                
    model_masks = model_masks > 0 # bool
    np.save(f'{seq_folder}/tracks_{start_idx}_{end_idx}/model_masks.npy', model_masks)
    joblib.dump(frame_chunks_all, f'{seq_folder}/tracks_{start_idx}_{end_idx}/frame_chunks_all.npy')
    return frame_chunks_all, img_focal

def hawor_infiller(args, start_idx, end_idx, frame_chunks_all):
    # load infiller
    weight_path = args.infiller_weight
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    ckpt = torch.load(weight_path, map_location=device)
    pos_dim = 3
    shape_dim = 10
    num_joints = 15
    rot_dim = (num_joints + 1) * 6 # rot6d
    repr_dim = 2 * (pos_dim + shape_dim + rot_dim)
    nhead = 8 # repr_dim = 154
    horizon = 120
    filling_model = TransformerModel(seq_len=horizon, input_dim=repr_dim, d_model=384, nhead=nhead, d_hid=2048, nlayers=8, dropout=0.05, out_dim=repr_dim, masked_attention_stage=True)
    filling_model.to(device)
    filling_model.load_state_dict(ckpt['transformer_encoder_state_dict'])
    filling_model.eval()

    file = args.video_path
    video_root = os.path.dirname(file)
    video = os.path.basename(file).split('.')[0]
    seq_folder = os.path.join(video_root, video)
    img_folder = f"{video_root}/{video}/extracted_images"

    # Previous steps
    imgfiles = np.array(natsorted(glob(f'{img_folder}/*.jpg')))

    idx2hand = ['left', 'right']
    filling_length = 120

    fpath = os.path.join(seq_folder, f"SLAM/hawor_slam_w_scale_{start_idx}_{end_idx}.npz")
    R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all = load_slam_cam(fpath)

    pred_trans = torch.zeros(2, len(imgfiles), 3)
    pred_rot = torch.zeros(2, len(imgfiles), 3)
    pred_hand_pose = torch.zeros(2, len(imgfiles), 45)
    pred_betas = torch.zeros(2, len(imgfiles), 10)
    pred_valid = torch.zeros((2, pred_betas.size(1)))    

    # camera space to world space
    tid = [0, 1]            
    for k, idx in enumerate(tid):
        frame_chunks = frame_chunks_all[idx]

        if len(frame_chunks) == 0:
            continue

        for frame_ck in frame_chunks:
            print(f"from frame {frame_ck[0]} to {frame_ck[-1]}")                
            pred_path = os.path.join(seq_folder, 'cam_space', str(idx), f"{frame_ck[0]}_{frame_ck[-1]}.json")
            with open(pred_path, "r") as f:
                pred_dict = json.load(f)
            data_out = {
                k:torch.tensor(v) for k, v in pred_dict.items()
                }

            R_c2w_sla = R_c2w_sla_all[frame_ck]
            t_c2w_sla = t_c2w_sla_all[frame_ck]

            data_world = cam2world_convert(R_c2w_sla, t_c2w_sla, data_out, 'right' if idx > 0 else 'left')

            pred_trans[[idx], frame_ck] = data_world["init_trans"]
            pred_rot[[idx], frame_ck] = data_world["init_root_orient"]
            pred_hand_pose[[idx], frame_ck] = data_world["init_hand_pose"].flatten(-2)
            pred_betas[[idx], frame_ck] = data_world["init_betas"]
            pred_valid[[idx], frame_ck] = 1
            
        
    # runing fillingnet for this video
    frame_list = torch.tensor(list(range(pred_trans.size(1))))
    pred_valid = (pred_valid > 0).numpy()
    for k, idx in enumerate([1, 0]):
        missing = ~pred_valid[idx]

        frame = frame_list[missing]
        frame_chunks = parse_chunks_hand_frame(frame)

        print(f"run infiller on {idx2hand[idx]} hand ...")
        for frame_ck in tqdm(frame_chunks):
            start_shift = -1
            while frame_ck[0] + start_shift >= 0 and pred_valid[:, frame_ck[0] + start_shift].sum() != 2:
                start_shift -= 1  # Shift to find the previous valid frame as start
            print(f"run infiller on frame {frame_ck[0] + start_shift} to frame {min(len(imgfiles)-1, frame_ck[0] + start_shift + filling_length)}")

            frame_start = frame_ck[0]
            filling_net_start = max(0, frame_start + start_shift)
            filling_net_end = min(len(imgfiles)-1, filling_net_start + filling_length)
            seq_valid = pred_valid[:, filling_net_start:filling_net_end]
            filling_seq = {}
            filling_seq['trans'] = pred_trans[:, filling_net_start:filling_net_end].numpy()
            filling_seq['rot'] = pred_rot[:, filling_net_start:filling_net_end].numpy()
            filling_seq['hand_pose'] = pred_hand_pose[:, filling_net_start:filling_net_end].numpy()
            filling_seq['betas'] = pred_betas[:, filling_net_start:filling_net_end].numpy()
            filling_seq['valid'] = seq_valid
            # preprocess (convert to canonical + slerp)
            filling_input, transform_w_canon = filling_preprocess(filling_seq)
            src_mask = torch.zeros((filling_length, filling_length), device=device).type(torch.bool)
            src_mask = src_mask.to(device)
            filling_input = torch.from_numpy(filling_input).unsqueeze(0).to(device).permute(1,0,2) # (seq_len, B, in_dim)
            T_original = len(filling_input)
            filling_length = 120
            if T_original < filling_length:
                pad_length = filling_length - T_original
                last_time_step = filling_input[-1, :, :]
                padding = last_time_step.unsqueeze(0).repeat(pad_length, 1, 1)
                filling_input = torch.cat([filling_input, padding], dim=0) 
                seq_valid_padding = np.ones((2, filling_length - T_original))
                seq_valid_padding = np.concatenate([seq_valid, seq_valid_padding], axis=1) 
            else:
                seq_valid_padding = seq_valid
                

            T, B, _ = filling_input.shape

            valid = torch.from_numpy(seq_valid_padding).unsqueeze(0).all(dim=1).permute(1, 0) # (T,B)
            valid_atten = torch.from_numpy(seq_valid_padding).unsqueeze(0).all(dim=1).unsqueeze(1) # (B,1,T)
            data_mask = torch.zeros((horizon, B, 1), device=device, dtype=filling_input.dtype)
            data_mask[valid] = 1
            atten_mask = torch.ones((B, 1, horizon),
                        device=device, dtype=torch.bool)
            atten_mask[valid_atten] = False
            atten_mask = atten_mask.unsqueeze(2).repeat(1, 1, T, 1) # (B,1,T,T)

            output_ck = filling_model(filling_input, src_mask, data_mask, atten_mask)

            output_ck = output_ck.permute(1,0,2).reshape(T, 2, -1).cpu().detach() #  two hands

            output_ck = output_ck[:T_original]

            filling_output = filling_postprocess(output_ck, transform_w_canon)

            # repalce the missing prediciton with infiller output
            filling_seq['trans'][~seq_valid] = filling_output['trans'][~seq_valid]
            filling_seq['rot'][~seq_valid] = filling_output['rot'][~seq_valid]
            filling_seq['hand_pose'][~seq_valid] = filling_output['hand_pose'][~seq_valid]
            filling_seq['betas'][~seq_valid] = filling_output['betas'][~seq_valid]

            pred_trans[:, filling_net_start:filling_net_end] = torch.from_numpy(filling_seq['trans'][:])
            pred_rot[:, filling_net_start:filling_net_end] = torch.from_numpy(filling_seq['rot'][:])
            pred_hand_pose[:, filling_net_start:filling_net_end] = torch.from_numpy(filling_seq['hand_pose'][:])
            pred_betas[:, filling_net_start:filling_net_end] = torch.from_numpy(filling_seq['betas'][:])
            pred_valid[:, filling_net_start:filling_net_end] = 1
    save_path = os.path.join(seq_folder, "world_space_res.pth")
    joblib.dump([pred_trans, pred_rot, pred_hand_pose, pred_betas, pred_valid], save_path)
    return pred_trans, pred_rot, pred_hand_pose, pred_betas, pred_valid