Spaces:
Running
Running
import sys | |
sys.path.append('droid_slam') | |
from tqdm import tqdm | |
import numpy as np | |
import torch | |
import lietorch | |
import cv2 | |
import os | |
import glob | |
import time | |
import argparse | |
import torch.nn.functional as F | |
from droid import Droid | |
def show_image(image): | |
image = image.permute(1, 2, 0).cpu().numpy() | |
cv2.imshow('image', image / 255.0) | |
cv2.waitKey(1) | |
def image_stream(datapath, image_size=[320, 512]): | |
""" image generator """ | |
fx, fy, cx, cy = 517.3, 516.5, 318.6, 255.3 | |
K_l = np.array([fx, 0.0, cx, 0.0, fy, cy, 0.0, 0.0, 1.0]).reshape(3,3) | |
d_l = np.array([0.2624, -0.9531, -0.0054, 0.0026, 1.1633]) | |
# read all png images in folder | |
images_list = sorted(glob.glob(os.path.join(datapath, 'rgb', '*.png')))[::2] | |
for t, imfile in enumerate(images_list): | |
image = cv2.imread(imfile) | |
ht0, wd0, _ = image.shape | |
image = cv2.undistort(image, K_l, d_l) | |
image = cv2.resize(image, (320+32, 240+16)) | |
image = torch.from_numpy(image).permute(2,0,1) | |
intrinsics = torch.as_tensor([fx, fy, cx, cy]).cuda() | |
intrinsics[0] *= image.shape[2] / 640.0 | |
intrinsics[1] *= image.shape[1] / 480.0 | |
intrinsics[2] *= image.shape[2] / 640.0 | |
intrinsics[3] *= image.shape[1] / 480.0 | |
# crop image to remove distortion boundary | |
intrinsics[2] -= 16 | |
intrinsics[3] -= 8 | |
image = image[:, 8:-8, 16:-16] | |
yield t, image[None], intrinsics | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--datapath") | |
parser.add_argument("--weights", default="droid.pth") | |
parser.add_argument("--buffer", type=int, default=512) | |
parser.add_argument("--image_size", default=[240, 320]) | |
parser.add_argument("--disable_vis", action="store_true") | |
parser.add_argument("--beta", type=float, default=0.6) | |
parser.add_argument("--filter_thresh", type=float, default=1.75) | |
parser.add_argument("--warmup", type=int, default=12) | |
parser.add_argument("--keyframe_thresh", type=float, default=2.25) | |
parser.add_argument("--frontend_thresh", type=float, default=12.0) | |
parser.add_argument("--frontend_window", type=int, default=25) | |
parser.add_argument("--frontend_radius", type=int, default=2) | |
parser.add_argument("--frontend_nms", type=int, default=1) | |
parser.add_argument("--backend_thresh", type=float, default=15.0) | |
parser.add_argument("--backend_radius", type=int, default=2) | |
parser.add_argument("--backend_nms", type=int, default=3) | |
args = parser.parse_args() | |
args.stereo = False | |
torch.multiprocessing.set_start_method('spawn') | |
print("Running evaluation on {}".format(args.datapath)) | |
print(args) | |
droid = Droid(args) | |
time.sleep(5) | |
tstamps = [] | |
for (t, image, intrinsics) in tqdm(image_stream(args.datapath)): | |
if not args.disable_vis: | |
show_image(image) | |
droid.track(t, image, intrinsics=intrinsics) | |
traj_est = droid.terminate(image_stream(args.datapath)) | |
### run evaluation ### | |
print("#"*20 + " Results...") | |
import evo | |
from evo.core.trajectory import PoseTrajectory3D | |
from evo.tools import file_interface | |
from evo.core import sync | |
import evo.main_ape as main_ape | |
from evo.core.metrics import PoseRelation | |
image_path = os.path.join(args.datapath, 'rgb') | |
images_list = sorted(glob.glob(os.path.join(image_path, '*.png')))[::2] | |
tstamps = [float(x.split('/')[-1][:-4]) for x in images_list] | |
traj_est = PoseTrajectory3D( | |
positions_xyz=traj_est[:,:3], | |
orientations_quat_wxyz=traj_est[:,3:], | |
timestamps=np.array(tstamps)) | |
gt_file = os.path.join(args.datapath, 'groundtruth.txt') | |
traj_ref = file_interface.read_tum_trajectory_file(gt_file) | |
traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est) | |
result = main_ape.ape(traj_ref, traj_est, est_name='traj', | |
pose_relation=PoseRelation.translation_part, align=True, correct_scale=True) | |
print(result) | |