ThunderVVV's picture
add thirdparty
b7eedf7
import sys
sys.path.append('droid_slam')
from tqdm import tqdm
import numpy as np
import torch
import lietorch
import cv2
import os
import glob
import time
import argparse
import torch.nn.functional as F
from droid import Droid
def show_image(image):
image = image.permute(1, 2, 0).cpu().numpy()
cv2.imshow('image', image / 255.0)
cv2.waitKey(1)
def image_stream(datapath, image_size=[320, 512]):
""" image generator """
fx, fy, cx, cy = 517.3, 516.5, 318.6, 255.3
K_l = np.array([fx, 0.0, cx, 0.0, fy, cy, 0.0, 0.0, 1.0]).reshape(3,3)
d_l = np.array([0.2624, -0.9531, -0.0054, 0.0026, 1.1633])
# read all png images in folder
images_list = sorted(glob.glob(os.path.join(datapath, 'rgb', '*.png')))[::2]
for t, imfile in enumerate(images_list):
image = cv2.imread(imfile)
ht0, wd0, _ = image.shape
image = cv2.undistort(image, K_l, d_l)
image = cv2.resize(image, (320+32, 240+16))
image = torch.from_numpy(image).permute(2,0,1)
intrinsics = torch.as_tensor([fx, fy, cx, cy]).cuda()
intrinsics[0] *= image.shape[2] / 640.0
intrinsics[1] *= image.shape[1] / 480.0
intrinsics[2] *= image.shape[2] / 640.0
intrinsics[3] *= image.shape[1] / 480.0
# crop image to remove distortion boundary
intrinsics[2] -= 16
intrinsics[3] -= 8
image = image[:, 8:-8, 16:-16]
yield t, image[None], intrinsics
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--datapath")
parser.add_argument("--weights", default="droid.pth")
parser.add_argument("--buffer", type=int, default=512)
parser.add_argument("--image_size", default=[240, 320])
parser.add_argument("--disable_vis", action="store_true")
parser.add_argument("--beta", type=float, default=0.6)
parser.add_argument("--filter_thresh", type=float, default=1.75)
parser.add_argument("--warmup", type=int, default=12)
parser.add_argument("--keyframe_thresh", type=float, default=2.25)
parser.add_argument("--frontend_thresh", type=float, default=12.0)
parser.add_argument("--frontend_window", type=int, default=25)
parser.add_argument("--frontend_radius", type=int, default=2)
parser.add_argument("--frontend_nms", type=int, default=1)
parser.add_argument("--backend_thresh", type=float, default=15.0)
parser.add_argument("--backend_radius", type=int, default=2)
parser.add_argument("--backend_nms", type=int, default=3)
args = parser.parse_args()
args.stereo = False
torch.multiprocessing.set_start_method('spawn')
print("Running evaluation on {}".format(args.datapath))
print(args)
droid = Droid(args)
time.sleep(5)
tstamps = []
for (t, image, intrinsics) in tqdm(image_stream(args.datapath)):
if not args.disable_vis:
show_image(image)
droid.track(t, image, intrinsics=intrinsics)
traj_est = droid.terminate(image_stream(args.datapath))
### run evaluation ###
print("#"*20 + " Results...")
import evo
from evo.core.trajectory import PoseTrajectory3D
from evo.tools import file_interface
from evo.core import sync
import evo.main_ape as main_ape
from evo.core.metrics import PoseRelation
image_path = os.path.join(args.datapath, 'rgb')
images_list = sorted(glob.glob(os.path.join(image_path, '*.png')))[::2]
tstamps = [float(x.split('/')[-1][:-4]) for x in images_list]
traj_est = PoseTrajectory3D(
positions_xyz=traj_est[:,:3],
orientations_quat_wxyz=traj_est[:,3:],
timestamps=np.array(tstamps))
gt_file = os.path.join(args.datapath, 'groundtruth.txt')
traj_ref = file_interface.read_tum_trajectory_file(gt_file)
traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est)
result = main_ape.ape(traj_ref, traj_est, est_name='traj',
pose_relation=PoseRelation.translation_part, align=True, correct_scale=True)
print(result)